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Ultrafast perturbation maps as a quantitative tool
for testing of multi-port photonic devices
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Advanced photonic probing techniques are of great importance for the development of non-

contact wafer-scale testing of photonic chips. Ultrafast photomodulation has been identified

as a powerful new tool capable of remotely mapping photonic devices through a scanning

perturbation. Here, we develop photomodulation maps into a quantitative technique through

a general and rigorous method based on Lorentz reciprocity that allows the prediction of

transmittance perturbation maps for arbitrary linear photonic systems with great accuracy

and minimal computational cost. Excellent agreement is obtained between predicted and

experimental maps of various optical multimode-interference devices, thereby allowing direct

comparison of a device under test with a physical model of an ideal design structure. In

addition to constituting a promising route for optical testing in photonics manufacturing,

ultrafast perturbation mapping may be used for design optimization of photonic structures

with reconfigurable functionalities.
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The industrialization of photonic integrated circuits as a
high-volume, low-cost technology requires new approa-
ches for optical testing1. Compared to the maturity of

wafer-scale testing of nanoelectronics, available techniques for
testing of optical chips are limited. Standard optical transmission
measurements are able to address the transfer function of systems
between all input and output ports2, 3, however they do not allow
access to the performance of individual elements in a complex
circuit of many cascaded elements. As one of the possible solu-
tions, introducing erasable gratings allows transmission char-
acterization of certain parts of a device4. The most advanced tools
for characterization of photonic devices rely on the use of a
scanning perturbation placed in the near-field of the structure to
infer information on the electromagnetic fields propagating
within it5. Near-field optical techniques can provide very high
resolution information on electromagnetic fields and are excellent
research tools for detailed studies of new concepts. Their use in
an industrial environment is less obvious due to the complexity of
the nanoprobes and the requirement of near-field access.

Recently, a new technique, named ultrafast photomodulation
spectroscopy (UPMS), that allows the remote optical character-
ization of photonic devices was introduced6. UPMS measures the
impact of a local refractive index variation, created by ultrafast
excitation of free carriers in the semiconductor material, on the
transmittance between two ports of a photonic structure at a
given frequency. The technique applies to arbitrary linear pho-
tonic systems, such as optical waveguides7, multimode inter-
ference (MMI) devices8, photonic-crystal structures9, and
subwavelength grating metamaterials10. By moving the pertur-
bation position throughout the photonic structure, one obtains a
transmittance perturbation map that is characteristic of the
photonic structure, light excitation, and collection. Owing to its
high operational speed and remote excitation, UPMS appears as a
promising technology for non-contact wafer-scale testing of
photonic chips. Developing the technique as a quantitative tool
for optical testing requires establishing formally how the per-
turbation map stems from the light flow distribution in the
photonic structure. A basic understanding of photomodulation
maps may also open new possibilities for the design optimization
of photonic devices with reconfigurable functionalities, obtained
by exploiting multiple simultaneous ultrafast perturbations11.

The sensitivity of electromagnetic fields to a perturbation has
been studied earlier in the context of scanning near-field tips. In
particular, it was shown that the fieldmap of a resonant mode can
be recovered by analyzing the resonance spectral shift induced by
a perturbation12–16. This approach is not restrictive to near-field
investigations, as shown recently in a study exploiting a remote
thermo-optic perturbation17. The problem considered here,
however, differs in the fact that no spectral information is
exploited, since the transmittance variation is measured at a given
wavelength. A direct numerical resolution of the electromagnetic
problem is also not a viable strategy since, besides not bringing
much physical insight, one should repeat the simulations as many
times as the number of perturbation positions. Therefore, it
becomes a very computationally heavy task for large photonic
devices.

Generally speaking, the study of how sensitive a response
function is to design parameters variations is called a sensitivity
analysis. Exploiting differential calculus, one can show that once
the solution of the problem for the direct excitation is known, the
variation of the response function with respect to any design
parameter can be obtained with only one additional computation
using an adjoint excitation18. This constitutes the basis of so-
called adjoint methods, which have been used for sensitivity -
and design optimization studies in many fields, including fluid
dynamics19, geophysics20, microwave antennas21–23,

phononics24, and photonics25–34. An approach was recently
proposed to predict the transmittance sensitivity between two
ports of a nanophotonic device to the material permittivity34.
Adjoint methods are however limited by the fact that they operate
in a perturbative regime, valid for permittivity variations that
weakly affect the response function of the system. In UPMS, the
permittivity variations occur on the wavelength scale and can be
quite large in amplitude, thereby resulting in substantial trans-
mittance changes.

Here, we develop a general and rigorous method that allows
the prediction of transmittance perturbation maps for arbitrary
linear multiport photonic devices with great accuracy and mini-
mal computational cost. By exploiting the Lorentz reciprocity
theorem applied to normalized waveguide modes, we show that
perturbation maps can be obtained simply by computing the
response of the unperturbed system for two independently exci-
ted ports. A key step in the formalism is to accurately consider the
local-field correction due to the presence of the perturbation. We
implement highly-accurate corrections for small (dipole) cylind-
rical perturbations and propose approximate ones for large
(wavelength-scale) perturbations. The full spatial perturbation
maps of various optical multimode-interference devices are then
measured experimentally by UPMS. An overall very good
agreement with the predicted maps is found, thereby validating
our theoretical method and experimental technique, as well as our
physical understanding of perturbation maps in general. We show
that the experimental access to perturbation maps using ultrafast
photomodulation can be used to determine fabrication errors and
tolerances in photonics manufacturing. We believe that the pos-
sibility to map the impact of local refractive index variations on
mode transmittance could also open new perspectives in the
framework of refractive-index engineering to enhance the func-
tionalities of photonic components11, 35–39.

Results
Theory and numerical results. Let us consider an arbitrary
photonic structure described by a relative permittivity tensor ϵb
and coupled to one or several input and output waveguides,
yielding a total of N modes or ports, see Fig. 1. The m-th input
mode, denoted as eΦþ

m, is exciting the system and couples to the
n-th output mode, denoted as eΦ�

n , with a transmission coefficient
t0mn. The + (resp. −) superscript indicates ingoing (resp. out-
going) propagation.

Δ  (r)

(t 0
mn + Cmn)Φ

~
n
–

Em(r)+Φm
~ +

Fig. 1 Illustration of the problem. An m-th ingoing waveguide mode eΦþ
m

excites an arbitrary photonic system containing a perturbation Δϵ, yielding
the total field Eþ

m . The transmission coefficient to the n-th outgoing modeeΦ�
n is tmn ¼ t0mn þ Cmn, where t0mn is the transmission coefficient in the

unperturbed system and Cmn the coupling coefficient induced by scattering
by the perturbation. The perturbation map is obtained by scanning the
perturbation over the photonic system
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A change of the relative permittivity to ϵ(r)= ϵb + Δϵ(r) in the
system results in a change in the transmission coefficient due to
light scattering by the perturbation as

tmn ¼ t0mn þ Cmn; ð1Þ

where Cmn is the coupling coefficient between the m-th ingoing
mode and the n-th outgoing mode via the scatterer Δϵ(r). The
relative variation of the transmittance, which can be measured
experimentally, thus reads

ΔT
T

¼ tmnj j2
t0mn

�� ��2 � 1 ¼ Cmnj j2
t0mn

�� ��2 þ 2Re
Cmn

t0mn

� �
: ð2Þ

In this section, we will derive analytical formulas for the
coupling coefficient Cmn as a function of the fields produced by
exciting the unperturbed photonic system by the m-th and n-th
ingoing modes, respectively, and provide an efficient method to
estimate it for local perturbations placed at arbitrary positions.

To predict the impact of a perturbation on the transmission
properties of a multi-port photonic device, we start from the
vector wave equation for the total electric field Eþ

m produced by an
input mode eΦþ

m in the perturbed system, which, using the
exp(−iωt) convention, reads

∇ ´∇ ´Eþ
mðrÞ � k20ϵðrÞEþ

mðrÞ ¼ iωμ0J
þ
mðrÞ: ð3Þ

Here, ϵ is the relative permittivity tensor of the photonic
structure, Jþm is the current density source produced by eΦþ

m at the
entrance of the photonic system and k0= ω/c.

Decomposing the total field as the background and scattered
field, Eþ

m ¼ Eþ
b;m þ Eþ

s;m, we reach the scattered field formulation

∇ ´∇ ´ Eþ
s;mðrÞ � k20ϵbE

þ
s;mðrÞ ¼ k20ΔϵðrÞEþ

mðrÞ: ð4Þ

The perturbation Δϵ readily appears as a source for the scattered
field in the unperturbed system with an associated current density

Jþs;mðrÞ ¼ �iωϵ0ΔϵðrÞEþ
mðrÞ: ð5Þ

To calculate the coupling efficiency between the scattered field
and an outgoing mode eΦ�

n , we exploit the Lorentz reciprocity
theorem in waveguide geometry7, which, upon the sole assump-
tion that the materials are reciprocal, i.e. ϵT = ϵ, where the
superscript T denotes matrix transposition, establishes a relation
between the current density sources and the fields produced in an
arbitrary system for two different situations (typically, different
excitations). Assuming that the modes of the input and output
waveguides eΦ form a complete set, meaning that an arbitrary
propagating field in the waveguides can be written as a linear
combination of waveguide (guided and radiating) modes, one
finds that the excitation amplitude of an outgoing mode by a
source is given by the overlap integral between the current density
and the field produced at the source location by exciting the
system with the reciprocal ingoing mode, that is

Cmn ¼ � 1
4

R
Jþs;mðrÞ � Eþ

n ðrÞdr
¼ iωϵ0

4

R
ΔϵðrÞEþ

mðrÞ � Eþ
n ðrÞdr;

ð6Þ

where the 1/4 factor results from mode normalization with
unitary power flux40.

Equation (6) constitutes the basis of our approach. It is exact
and applies to all multiple-input multiple-output photonic
structures and all kinds of perturbations, provided that the
materials involved are reciprocal. The downside of this generality
is the fact that the fields in Eq. (6) are the total fields, which result
from light scattering by the perturbation and are thus different for

each perturbation position, and not the background fields, which
are the same for all perturbation positions. For spatially-localized
perturbations, a transition (T) matrix may be computed and used
to predict the total fields from the background fields41. As we will
now show, simple analytical expressions for the coupling
coefficient Cmn can also be obtained in certain cases.

Hereafter, we will consider a planar dielectric waveguide
system, such as a typical silicon-on-insulator (SOI) photonic
device, in which light propagation is driven by the fundamental
TE-mode. Since we are interested in planar wave propagation
where out-of-plane losses are negligible, the problem can safely be
treated within a 2D approximation, using the mode propagation
constant to define an effective refractive index. We further
assume that all materials have an isotropic (scalar) permittivity, ϵ
= ϵI.

We start with the case of a small cylindrical perturbation,
described by Δϵ(r)= ΔϵΠ(|r− r0|/2R), where Π(r) is the Heavi-
side box function, r0 the position of the cylinder center and R its
radius. Formally, the induced electric dipole moment p of a
perturbation is defined from the polarization P(r)= ϵ0ΔϵE(r) as
p ¼ limSp!0

R
Sp
PðrÞdr, where Sp is the perturbation surface area.

The dipole moment p is also related to the background field Eb
via the scatterer polarizability α as p= ϵ0ϵbαEb(r0). In the limit of
small perturbations (

ffiffiffi
ϵ

p
R=λ � 1), it is known from electrostatics

that the total electric field in cylindrical and spherical cavities
should be constant over the perturbation surface42. Equating the
two expressions above for the dipole moment, we therefore reach
the so-called local-field correction to the field

E r0ð Þ ¼ ϵbα

ΔϵSp
Eb r0ð Þ; ð7Þ

with Sp= πR2. For cylindrical scatterers, the polarizability may be
computed from the Mie scattering coefficient of order 143 (a1 in
TE-polarization) as α(ω)= i8c2a1/(ω2ϵb).

Considering again that E should be constant in small
cylindrical perturbations, the integral in Eq. (6) can be simplified,
and using Eq. (7), we eventually arrive to

Cmn ¼
iωϵ0ϵ

2
bα

2

4ΔϵSp
Eþ
b;m r0ð Þ � Eþ

b;n r0ð Þ: ð8Þ

The coupling coefficient Cmn is now expressed only as a
function of the background fields for two ingoing excitations. The
relative transmittance variation ΔT/T, obtained via Eq. (2), can
thus be obtained for any perturbation position with only two
electromagnetic computations for an unperturbed system and a
scalar product.

To illustrate and validate our reciprocity-based method, we
consider a typical 1 × 2 MMI device8 operating at 1.55 μm. These
systems have been investigated experimentally using UPMS in
previous works6, 11. The simulations were made with a home-
made implementation of the aperiodic Fourier-Model Method
(a-FMM, see Methods)44 and the input modes were normalized
to have a unitary power.

Figure 2a shows the norm of the electric fields, Eþ
b;m

��� ��� and

Eþ
b;n

��� ���, created in the MMI without any perturbation for ingoing

excitations by the fundamental modes of the input and upper
output waveguides. For the excitation through the input
waveguide, light is split in two, as expected, and coupled to the
output waveguide fundamental mode with (modal) transmittance
T= 43.1% for each. For the excitation through the output
waveguide, a significant part of light is scattered out of the MMI,
yet the transmittance between the two waveguide fundamental
modes is identical to the above, due to reciprocity.
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Having the two background fields, the perturbation map is
then straightforwardly obtained from Eqs. (2) and (8), as shown
in Fig. 2b in the illustrative case of a cylindrical perturbation of
diameter 2R= 10 nm and refractive index variation Δn=−0.25.
The positive and negative values of ΔT/T indicate that the
perturbation respectively increases and decreases the transmit-
tance to the output waveguide mode. To verify that the prediction
is correct, we then computed the transmittance variation ΔT/T
due to the cylindrical perturbation by solving rigorously with a-
FMM the electromagnetic problem for each perturbation
position, thereby requiring as many calculations as the number
of studied perturbation positions. The results of these simulations
can be safely considered as exact. Figure 2c shows a quantitative
agreement between our reciprocity-based model and the fully-
numerical (point-by-point) computations. This clearly demon-
strates the validity of our approach and its high accuracy in the
dipolar approximation. As shown in the Supplementary Note 1,
the local-field correction is essential to achieve quantitative
agreement. Besides, let us emphasize that the gain in computa-
tional time is truly significant. To get the perturbation line along z

using a-FMM on a standard laptop computer, the point-by-point
simulations required about 30–45 min while the predictions from
our reciprocity-based model took less than 2 s.

In practical situations, such as in the UPMS experiments that
will be presented in the next section, the perturbations occur on
the wavelength scale and not on deep-subwavelength scales. As a
result, they do not behave as electric dipoles (higher-order
multipoles are also excited), such that the expressions derived in
the previous section within the dipolar approximation cannot be
applied.

As discussed above, Eq. (6) is valid for all perturbation sizes,
however it requires calculating the total fields from the incident
fields at each position of space, which may be inconvenient. Here,
we propose to circumvent this issue by modeling large
perturbations as simple 1D Fabry-Perot cavities. Optical systems
such as MMIs are indeed essentially operating in a paraxial
propagation regime, i.e., the variations of the field in the
transverse direction x are much slower than those along the
propagation direction z. We may then neglect the transverse
dimension. This model is approximate but, besides providing an
analytical formula for Cmn as a function of the background fields,
as we will see, it has the important benefit to highlight the
physical mechanisms underlying perturbation maps with large
perturbations.

Let us then consider a 1D cavity of size d centered on z0 with
refractive index nb+ Δn in a background medium with refractive
index nb ¼ ffiffiffiffiffi

ϵb
p

. Following a classical derivation for layered
media45, it can be shown that the total fields in the cavity for light
at normal incidence on the cavity, propagating along the z-axis,
are related to the background fields as

Eþ
mðrÞ ¼

t12 exp iωΔn z � z0 � d=2ð Þð Þ=c½ �
1� r221 exp iω nb þ Δnð Þd=c½ � Eþ

b;mðrÞ; ð9Þ

and

Eþ
n ðrÞ ¼

t12 exp �iωΔn z � z0 þ d=2ð Þð Þ=c½ �
1� r221 exp iω nb þ Δnð Þd=c½ � Eþ

b;nðrÞ; ð10Þ

where t12= 2nb/(2nb+ Δn) and r21= Δn/(2nb+ Δn) are the
transmission and reflection amplitude coefficients at an interface
between the background medium and the cavity, respectively.
Inserting Eqs. (9) and (10) in Eq. (6), we therefore reach

Cmn ¼
iωϵ0
4

t212 exp iωΔnd=c½ �
1� r221 exp½iωðnb þ ΔnÞd=c�ð Þ2 Δϵ

Z
Sp

Eþ
b;mðrÞ � Eþ

b;nðrÞdr:

ð11Þ
Several observations are in place. First, compared to the
expression obtained in the dipolar approximation (Eq. (8)),
calculating Cmn requires performing an overlap integral over the
perturbation surface. The wavelength-scale oscillations observed
in Fig. 2b will therefore be smoothed out. Second, it is of utmost
importance to note the presence of a dephasing term, exp[iωΔnd/
c], which plays a leading role on the perturbation map. Indeed, it
is the only part of the prefactor that survives for low-index-
constrast perturbations, Δn=nb � 1, as Eq. (11) simply reduces to

Cmn ¼
iωϵ0
4

exp i
ω

c
Δnd

h i
Δϵ

Z
Sp

Eþ
b;mðrÞ � Eþ

b;nðrÞdr: ð12Þ

Based on these considerations, let us finally discuss the
applicability of this approximate model for UPMS experiments.
The actual perturbation in the experiments does not exhibit a
sharp refractive-index-change as in a cavity but rather a smooth
Gaussian-like profile. This, in turn, should give a weak reflection
coefficient, such that, as above, the leading mechanisms
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Fig. 2 Validity of the reciprocity-based model for sub-wavelength
perturbations. The photonic structure is a 1 × 2 MMI device of length
L= 33.2 μm and width W= 6.0 μm operating at 1.55 μm (see Methods for
more details). a Norms of the background electric field generated by
ingoing excitations from the fundamental modes of the input and upper

output waveguides, Eþ
b;m

��� ��� and Eþ
b;n

��� ���, respectively. b Resulting perturbation

map as predicted using Eq. (8) for a cylindrical perturbation of diameter 2R
= 10 nm and refractive index variation Δn=−0.25. c Comparison between
the perturbation curves for the same system along a cut (black dotted line
in b) obtained from a-FMM performed for each perturbation position (fully-
numerical, blue solid line), and predicted from the reciprocity-based model
(yellow dotted line)
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underlying the perturbation maps should be (i) the spatial
averaging and (ii) the dephasing induced over the perturbation
surface. We thus believe that the knowledge of the average size
and refractive index of the perturbation are sufficient to predict
the experimental perturbation maps with good quantitative
agreement. This hypothesis will be verified in the next section,
where our predictions will be compared directly to experimental
results.

Experimental perturbation maps and comparison with theory.
Experimental perturbation maps were obtained using UPMS (see
Methods). In this technique, an 1550 nm infrared probe travels
inside the photonic chip, while a synchronized 417 nm pump
pulse is focused onto the surface of the silicon-on-insulator (SOI)
waveguide6. The femtosecond optical pump pulse locally reduces
the refractive index of the silicon via the plasma dispersion
effect46. Due to the ultrafast nature of the pump, free-carrier
concentrations far exceeding those achievable by electrical
effects can be obtained47. The local perturbation in the refractive
index modulates the transmittance of the device. By precisely
recording the change in transmittance ΔT/T as a function
of the perturbation position, it is possible to build up a 2D spatial
map of the photomodulation response, providing a direct visua-
lization of the impact of local refractive index variations on
transmittance.

As an illustration of the capabilities of the technique, we first
investigate a single-input quadruple-output (1 × 4) MMI as
shown in the scanning electron microscopy (SEM) image of
Fig. 3a. The MMI is designed to produce an equal split of
intensity coupled to the four output ports. The corresponding
multimode interference pattern in the device is shown via the
calculated fieldmap in Fig. 3b. This local field pattern would be
obtained using conventional scanning near-field optical micro-
scopy. As discussed above, perturbation maps show the sensitivity
of a specific output port transmittance, ΔT, to a local
perturbation. The perturbation maps of the differential transmis-
sion, ΔT/T, obtained when detecting a specific output transmit-
tance while scanning the pump spot over the device, are shown in
Fig. 3c for the first and second output waveguide modes (the
remaining two are given in the Supplementary Note 2). We
obtain detailed maps showing structures on the length scale of the
pump spot size of 740 nm. The experimental maps can be directly
compared with predictions using Eq. (11). The theoretical maps
were calculated for design parameters L= 29.4 μm and W= 8.0
μm, and experimentally determined values of d= 740 nm and Δn
=−0.25 (see details in the Methods section). The amplitudes of
the experimental and theoretical maps shown in Fig. 3c differ by
about 0.1, which is likely to be due to the approximate values
taken to reproduce the experiments. However, the experimental
and theoretical maps show a remarkable level of agreement in
their details and in relative values. This is a clear indication that
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our approximate theoretical model and our experimental
approach are fully consistent with each other in obtaining the
perturbation map of photonic devices.

In order to quantify the similarity between the experimental
and calculated perturbation maps, we calculated their two-
dimensional correlation coefficient Γ. For this parameter, an area
of equal size as the MMI region was scanned over the
experimental map, and the correlation coefficient was calculated
for each possible position, thus accounting for small relative shifts
in the experimental alignment. We evaluated a library of
theoretical perturbation maps scanning a wide range of design
parameters and obtained the maximum correlation values for
each calculated map in the library with the experimental result.
Figure 3d shows 2D maps of the maximum correlation values for
MMI widths W and lengths L around the fabricated device
dimensions (red cross). As expected from MMI self-imaging
theory, the device is significantly more sensitive to the width than
to the length of the MMI region8. This is shown by the contours,
which indicate 2, 10, and 20% decrease of the correlation with
respect to its maximum (as high as 0.9448), the largest correlation
coefficient clearly occurs around the dimensions observed by
SEM (L= 30.2 μm and W= 8.05 μm). The highest correlation
values predict a slightly wider device, as shown by the 2%
contour, which may be due to fabrication imperfections other
than systematic deviations in L and W.

While the above example illustrates the performance of a
multiple-output device using a single input, the ultimate
application of perturbation maps includes multiple-input multi-
ple-output devices. Figure 4 investigates the response of a
3 × 3 symmetric MMI, which has been designed to couple each
of the 3 inputs individually into 3 outputs at equal splitting ratios
of around 1:3. This design requirement of equal splitting ratios
can be fulfilled for a device of length L= 88.0 μm and widthW=
6.0 μm, as seen in the fieldmaps in Fig. 4b. This MMI length is
more than twice as long as that previously studied, and this type
of device is therefore much more sensitive to small fabrication
imperfections. Figure 4c shows four out of the nine possible
input-output configurations (the remaining five are given in the
Supplementary Note 2), demonstrating the capability of the
technique in providing a complete investigation of device
performance. It is worth noting that the excitation/collection
symmetry makes some of the perturbation maps very symme-
trical. The symmetry in x can be understood from the symmetry
of the input and output modes, while the symmetry in z stems
from reciprocity (Eq. (6)), which predicts that the maps should
look the same when flipping the input and output ports (see an
experimental verification on a 1 × 2 MMI in the Supplementary
Note 3). Contrary to the previous MMI, however, significant
deviations are seen between the experimental maps and
theoretical maps predicted for the design parameters. For
instance, some of the experimental maps are not strictly
symmetric, as they should be. These deviations indicate that the
fabricated structure does not operate according to its ideal design.
This appears clearly by calculating the correlation between
experimental and theoretical maps in the 2D parameter space
of L and W, see Fig. 4d, which shows that the maximum
correlation is obtained for a width reduction by ~0.1 μm, as
confirmed by the SEM image. As shown in the Supplementary
Note 4, better agreement between the experimental and
theoretical perturbation maps is indeed obtained when using
the device parameters extracted from SEM images for the
prediction.

Field intensity recovery from perturbation maps. The pertur-
bation maps reflect the spatially-distributed contribution of a
localized perturbation in the device to the transmittance to a

particular output. Areas of negative ΔT/T indicate reduced
transmittance, with light being diverted away from the considered
output mode, while positive ΔT/T areas indicate that the per-
turbation redirects part of the light towards the output mode.
This light could have originally been either coupled to a different
output or lost through scattering out of the device11. Consider
now the case where light coupled into the MMI from a specific
input mode couples with nearly unitary transmission to a single
output mode. In this case, the perturbation maps can exhibit only
negative ΔT/T areas. In such a situation, intuitively, one may
expect the extinction due to the perturbation to be proportional
to the field intensity. This would imply that perturbation maps
could provide a direct visualization of the light intensity in the
photonic device.

Formally, one can show from Lorentz reciprocity that, when
t0mn

�� �� ¼ 1, the field generated from an ingoing mode in the output
waveguide Eþ

b;n should be equal to the complex conjugate of the
field generated from an ingoing mode in the input waveguide,

Eþ
b;m

� �?

. This is equivalent to considering the time-reversed

solution of the direct problem. Under this condition, the coupling
coefficient Cmn—in Eq. (8) for small cylindrical perturbations or
Eqs. (11) and (12) for large low-index perturbations - becomes

directly proportional to the field intensity Eþ
b;m

��� ���2. Assuming then

that the transmission variation is small compared to the
transmission through the unperturbed system, Cmn � t0mn, one
indeed finds via Eq. (2) that ΔT/T should be directly proportional
to the field intensity (see the formal derivation in the
Supplementary Note 5).

We have tested this possibility to recover the field intensity
from perturbation maps with the case of a 1 × 2 MMI with a silica
cladding. This cladding would prevent any recovery of the
intensity from near-field measurements. Instead of considering
the transmittance to the fundamental modes of the individual
output waveguides, we studied the fundamental mode of the pair
of output waveguides, which yields a transmittance of about 87%.

Figure 5a shows the intensity distribution Eþ
b;m

��� ���2 for excitation by

the fundamental mode of the input waveguide and the upper
panel in Fig. 5b the perturbation map ΔT/T predicted from our
model for large perturbations (Eq. (11)) between the fundamental
input and output modes. The two maps clearly share the same
features, the differences being explained by the imperfect
transmission and the perturbative limit Cmn � t0mn which is not
completely fulfilled. Note also that the finite perturbation size
causes a reduction of the finer details of the intensity.
Experimentally, we measured the total output transmission of
the 1 × 2 MMI by combining the two outputs using a reversed 2 ×
1 MMI. Results are shown in the lower panel of Fig. 5b, where an
excellent agreement with theory is found. Quite remarkably, we
were able to resolve as many as five intermediate self-imaging
points.

Discussion
To summarize, we developed a rigorous theoretical under-
standing of photomodulation maps, making UPMS a quantitative
technique to characterize photonic devices. We believe that our
theoretical and experimental study contributes to the established
field of photonic probing techniques in several ways.

First, we developed a general and rigorous theoretical method
to predict the transmittance perturbation map of arbitrary linear
photonic systems due to local refractive index perturbations. In
line with adjoint methods, only two electromagnetic computa-
tions are required to obtain the full transmittance perturbation
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map. Contrary to most adjoint-based formalisms, however, ours
does not rely on any specific discretization scheme, making it
applicable to any electromagnetic simulation solver. The method
is also virtually exact and not restricted to small (in size and
permittivity change) perturbations, provided that the local-field
corrections induced by the perturbation are properly handled.
While these corrections may be computed numerically via a
T-matrix, we derived exact and approximate analytical expres-
sions for small cylindrical perturbations and large low-index-
contrast perturbations, respectively. The latter are necessary for
reproducing experimental results obtained using UPMS. We
believe that our theoretical method used with an efficient

electromagnetic solver such as a-FMM constitutes a new powerful
analysis approach of scanning perturbation experiments. It would
be interesting in a future work to generalize and apply the method
to nanostructured photonic components with superior perfor-
mances, such as sub-wavelength grating MMIs that exhibit an
anisotropic effective permittivity39. Future studies may also
consider using the method for design optimization of multi-port
photonic devices, as ensembles of such perturbations using UPMS
have been shown to enable reconfigurable photonic systems11.

Second, we performed UPMS experiments to measure the
perturbation maps of various MMI devices. A very good overall
agreement was found with the perturbation maps predicted by our
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method, demonstrating our capabilities to predict and measure the
perturbation maps of photonic devices. Interestingly, we observed
that perturbation maps exhibit a high sensitivity to fabrication
deviations from ideal design. These deviations were readily
observed via a parametric correlation study between experimental
and predicted maps. The value of this approach as a tool for
optical testing is given by a combination of experimental accuracy
and the reliability of the used model. At this stage, we have only
taken into account the MMI width W and length L to define a 2D
parameter space to categorize devices. Other parameters include
thickness variations of the SOI wafer, variations in the cladding
layer, refractive index variations including thermal variations over
the chip, and fabrication imperfections. As the perturbation
method relies on comparison with a model, a full analysis would
need to include all of these aspects, some of which bear similar
effects on the output performance. For example, variations in
effective refractive index caused by variable SOI or cladding var-
iations will result in different effective values of L and W. Fabri-
cation imperfections and gradients in device dimensions along the
wafer can both cause asymmetry in the structure, which could
explain some of the experimental results obtained in our work. At
this stage, our technique cannot fully interpret these results, which
would require a more detailed study. Nevertheless, the absolute
correlation amplitude may be used as a validation tool to
benchmark fabricated device performance against the ideal device
design. We envision that, with further quantitative investigations,
ultrafast perturbation maps could be deployed into industry as a
tool for diagnostics of device runs without requiring additional
structural information such as scanning electron microscopy. A
vital factor to address towards this aim will be characterization
speed. For typical scan parameters used here, we achieved scan
speeds on the order of a few micrometers per second, resulting in
full scanning times on the order of minutes. This could be sig-
nificantly improved to the order of a few seconds per device
through the use of a faster scanning system, such as a mirror
galvanometer, combined with higher frequency optical mod-
ulators to reduce dwell times.

Finally, we showed using UPMS that transmittance perturba-
tion map measurements could reveal the light intensity

distribution in high-transmittance devices. This possibility relies
on the assumptions that the transmittance of the photonic system
is nearly unity and that the transmission variation induced by the
perturbation is very small. Nevertheless, we believe that much
remains to be understood and tested, such as the capability of the
approach to reveal light propagation in imperfect systems. Deeper
investigations on this aspect may result in a paradigm change in
imaging techniques. We therefore hope that our study will
motivate further investigations and applications in photonics
research and manufacturing.

Methods
Numerical modeling. The simulations were performed using an in-house aper-
iodic Fourier Modal method (a-FMM)44. The a-FMM is a fully-vectorial method
relying on Fourier expansion techniques and perfectly matched layers, which has
been shown to provide numerical predictions with a high accuracy and a fast
convergence48. It relies on a scattering-matrix formalism to describe accurately the
coupling between modes propagating in the input waveguide, MMI, and output
waveguides. Simulations were performed in 2D, at a wavelength of 1.55 μm, using
effective indices 2.833 and 1.741 for the core and surrounding media to account for
the vertical confinement of the fundamental TE-mode of a 220/100 nm thick
silicon rib waveguide. For the 1 × 2 MMI investigated in Fig. 5, we used 2.8502 and
1.4446 as the core and surrounding effective material indices, since the structure
consisted in silica-covered strip waveguides. In all systems, the input and output
waveguides were 1 μm wide and the fundamental waveguide modes were con-
sidered as input and output. For the point-by-point a-FMM simulations of Fig. 2b,
since the polarizability α in Eq. (8) was that of a cylinder, the 10 nm diameter
cylindrical perturbation was discretized into about 80 smaller squares.

Sample fabrication. The MMI devices were fabricated from a 220 nm thick silicon
layer on top of a 2 μm thick SiO2 layer employing electron beam lithography and
reactive ion etching. The MMI lengths and widths are given in the main text. Single
mode 500 nm wide waveguides are tapered to 1 μm at the MMI boundaries,
ensuring an adiabatic size conversion of the fundamental mode over a 10 μm
distance.

Ultrafast photomodulation spectroscopy. The experimental setup is shown in
Fig. 6. Compared to earlier studies6, a new and improved setup was developed
using a 200 fs mode-locked Ti:Sapphire laser operating at 80MHz, in conjunction
with an optical parametric oscillator. The second harmonic of the laser at 417 nm
wavelength was used as the pump. Through the use of synchronized ultrafast pulses
for both the pump and probe, the effect of the perturbation can be observed during
the 200 fs window of the probe pulse, thereby drastically improving signal-to-noise
ratio. The pump was focused onto the surface of the device using a 100× objective
with a numerical aperture of 0.5, resulting in a perturbation spot size of 740 nm at
the focus with a fluence of 60 pJ μm−2. The same objective was used to image the
device for alignment purposes. The scans were carried out for 1550 nm probe
pulses, coupled into and out of the device via optical fibers and etched silicon
gratings, and delayed by 3 ps compared to the pump pulses. Transmitted intensity
was modulated using a mechanical chopper and was detected using an InGaAs
photodetector and lock-in amplifier. The effective refractive index change of Δn=
−0.25 was obtained experimentally as in the ref. 6 by observing the shifting of
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Fig. 6 Illustration of the experimental setup. Infrared probe pulses are
grating-coupled into the waveguide, travel through the device and are then
out-coupled by another grating. The transmitted light is collected by an
optical fiber and the transmission is recorded by an InGaAs photodetector
connected to a lock-in amplifier. The pump pulses are incident
perpendicular to the device’s surface, and the delay time between the two
pulses is controlled via a variable time delay stage. The pump focusing
objective is mounted to a 3D piezo stage which allows the pump spot to be
focused and scanned over the device
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fringes in the transmission spectra of an asymmetric Mach-Zehnder interferometer
(MZI) for a fixed perturbation length and vaying pump fluence on one of the
waveguide arms. The imaginary part of the refractive index change was estimated
theoretically from a Drude-Lorentz free-carrier model46 to Im(Δn)= 3 × 10−4. It
was found to have an insignificant impact on the theoretical predictions of per-
turbation maps and was thus neglected in the modeling.

Data availability. All data supporting this study are openly available from the
University of Southampton repository at https://doi.org/10.5258/SOTON/D0485.
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