Fig. 1
From: A synthetic enzyme built from DNA flips 107 lipids per second in biological membranes

Design of the lipid-scrambling DNA nanostructure. a Side and b top view of a 3D representation of the assembled DNA nanostructure. Complementary DNA strands are displayed in blue and yellow. Cholesterol modifications (red) at two specific locations are covalently bound to the DNA via an adenine-triethyleneglycol linker (A-TEG, black). c 2D schematic illustrating the pathway of the DNA single strands as well as crossover and modification positions. Triangles and squares denote the 3′ and 5′ ends of the strands, and the background grid specifies locations of individual nucleotides. d Non-denaturing 10% PAGE of DNA nanostructures annealed without (0C), with one (1C) or with two (2C) cholesterol modifications next to a DNA molecular weight ladder (L). The highest intensity band corresponds to a major population of monomeric structures. The low intensity bands suggest the presence of small amounts of dimers and multimers