Fig. 5

Laminar chiral microvortices versus turbulent vortices in stirring cuvettes. a Schematic mechanism of laminar chiral microvortex-selected chirality of BTAC and TPPS4 nuclei. The rapidly formed nuclei (<1 ms) are aligned in the laminar flow, and twisted by a shear force (Fs) to give rise to an initial chiral bias dependent on the rotation sense of microvortices. These primary nuclei then serve as the templates for the subsequent growth into supramolecular assemblies with the predefined chirality. Red, blue, and black axes refer to the spatial distributions of shear rate gradient and viscous shear force along the x, y, and z axes. b CFD simulation of chaotic flows generated by CW stirring at ~1000 rpm in cuvettes. Left: 2D representation of the flow direction (black streamlines) and velocity (color). Right: 3D streamlines display a snapshot of chaotic flows. The color bar indicates the magnitude of flow velocity. Scale bar, 5 mm. c CW stirring in cuvettes shows 9 positive CD signals (P chirality, solid red circles) and 11 negative CD signals (M chirality, void blue circles) of BTAC gels