Table 1 \(\left\{ {A_{{\mathrm{nt}}},\alpha _{{\mathrm{nt}}}} \right\}\) values for networks obtained by fitting the power law \({\it \Gamma} _{{\mathrm{nt}}} = A_{{\mathrm{nt}}}I^{\alpha _{{\mathrm{nt}}}}\) onto the curves of Fig. 2
From: Emergence of winner-takes-all connectivity paths in random nanowire networks
\({\boldsymbol{A}}_{\mathbf{j}}\) | 0.01 | 0.05 | 0.1 | 0.5 |
---|---|---|---|---|
\({\boldsymbol{\alpha }}_{\mathbf{j}} = 0.9\) | {0.0027,0.892} | {0.0133,0.896} | {0.0266,0.9} | {0.1407,0.925} |
\({\boldsymbol{\alpha }}_{\mathbf{j}} = 1.0\) | {0.0025,1.0} | {0.0125,1.0} | {0.0251,1.0} | {0.13071,1.024} |
\({\boldsymbol{\alpha }}_{\mathbf{j}} = 1.1\) | {0.0024,1.115} | {0.0125,1.115} | {0.0251,1.113} | {0.13941,1.159} |
\(\langle{\boldsymbol{\alpha }}_{\mathbf{j}}\rangle = 1.05\) | {0.0025,1.054} | {0.0125,1.049} | {0.0251,1.051} | {0.1323,1.071} |