Fig. 3 | Nature Communications

Fig. 3

From: HIF-2α-pVHL complex reveals broad genotype-phenotype correlations in HIF-2α-driven disease

Fig. 3

Class 1 mutations impact residues important for pVHL affinity to HIF-2α. a HIF-2α is shown as a stick model and pVHL is modeled as a cartoon with key residues displayed as stick models. Carbon is shown in green (pVHL) or light blue (HIF-2α), oxygen is shown in red, nitrogen is shown in blue, and sulfur is shown in yellow. Hydrogen bonds are denoted by dashed lines. (top panel) Interaction of HIF-2α residues 527-534 with pVHL. (bottom panel) Interaction of HIF-2α residues 534–540 with pVHL. Backbone atoms for pVHL residues G106 and R108 are labeled. b The HIF-2α peptide is shown as a stick model and the pVHL complex is displayed as a van der Waal surface (gray) set to 50% transparency. Mutations reported in HIF-2α driven disease are color-coordinated according to mutation frequency. Residues not reported to be mutated are shown in gray. c The residues of the HIF-2α peptide are colored according to temperature factor (B factor). As the B factor increases, the color transitions from blue to red and the peptide backbone (modeled as a putty) increases in diameter. A high B factor is indicative of increased flexibility and mobility. B factor values range from a low of 38.13 (Hyp531) and to a high of 100.28 (F540)

Back to article page