Table 1 Formulations of electrodynamics
From: Isolated detection of elastic waves driven by the momentum of light
Formulation | Momentum density G | Stress tensor \(\overline {\overline {\bf{T}} }\) |
---|---|---|
Minkowski | D × B | \(\left( {{\bf{D}} \cdot {\bf{E}} + {\bf{B}} \cdot {\bf{H}}} \right)\overline {\overline {\bf{I}} } /2 - {\bf{DE}} - {\bf{BH}}\) |
Abraham | (E × H)/c2 | \(\left[ {({\bf{D}} \cdot {\bf{E}} + {\bf{B}} \cdot {\bf{H}})\overline {\overline {\bf{I}} } - {\bf{DE}} - {\bf{BH}} - {\bf{ED}} - {\bf{HB}}} \right]/2\) |
Einstein-Laub | (E × H)/c2 | \(\left( {\varepsilon _0E^2 + \mu _0H^2} \right)\overline {\overline {\bf{I}} } /2 - {\bf{DE}} - {\bf{BH}}\) |
Amperian | ε0(E × B) | \(\left( {\varepsilon _0E^2 + \mu _0^{ - 1}B^2} \right)\overline {\overline {\bf{I}} } /2 - \varepsilon _0{\bf{EE}} - \mu _0^{ - 1}{\bf{BB}}\) |
Chu | (E × H)/c2 | \(\left( {\varepsilon _0E^2 + \mu _0H^2} \right)\overline {\overline {\bf{I}} } /2 - \varepsilon _0{\bf{EE}} - \mu _0{\bf{HH}}\) |