Table 1 Formulations of electrodynamics

From: Isolated detection of elastic waves driven by the momentum of light

Formulation

Momentum density G

Stress tensor \(\overline {\overline {\bf{T}} }\)

Minkowski

D × B

\(\left( {{\bf{D}} \cdot {\bf{E}} + {\bf{B}} \cdot {\bf{H}}} \right)\overline {\overline {\bf{I}} } /2 - {\bf{DE}} - {\bf{BH}}\)

Abraham

(E × H)/c2

\(\left[ {({\bf{D}} \cdot {\bf{E}} + {\bf{B}} \cdot {\bf{H}})\overline {\overline {\bf{I}} } - {\bf{DE}} - {\bf{BH}} - {\bf{ED}} - {\bf{HB}}} \right]/2\)

Einstein-Laub

(E × H)/c2

\(\left( {\varepsilon _0E^2 + \mu _0H^2} \right)\overline {\overline {\bf{I}} } /2 - {\bf{DE}} - {\bf{BH}}\)

Amperian

ε0(E × B)

\(\left( {\varepsilon _0E^2 + \mu _0^{ - 1}B^2} \right)\overline {\overline {\bf{I}} } /2 - \varepsilon _0{\bf{EE}} - \mu _0^{ - 1}{\bf{BB}}\)

Chu

(E × H)/c2

\(\left( {\varepsilon _0E^2 + \mu _0H^2} \right)\overline {\overline {\bf{I}} } /2 - \varepsilon _0{\bf{EE}} - \mu _0{\bf{HH}}\)

  1. The electromagnetic field momentum density and stress tensor for each electrodynamic formulation as reported in the literature17,21. The stress tensor terms are expanded as dyadics