Fig. 4 | Nature Communications

Fig. 4

From: PoreDesigner for tuning solute selectivity in a robust and highly permeable outer membrane pore

Fig. 4

Osmotic shock stopped-flow light scattering experiments were used to assess transport properties. Stopped-flow light scattering experiments revealed an order of magnitude or higher permeability than aquaporins for WT OmpF protein and its mutants as well as solute retention trends seen in OmpF protein mutants. a When OmpF (or OmpF mutant) containing proteoliposomes are mixed with hypertonic solutions, two different transport models can be observed based on whether the solute is permeable to the porin or not. b In the stopped-flow setup, for solute excluded model, normalized light scattering intensity levels off during the second stage as there is no inflow of water and solutes; for solute permeable model, normalized light scattering intensity decreased during the second stage due to inflow of water and solutes. c OmpF (WT) rejects PEG600 (600 Da) and larger molecules and thus only the PEG600 curves show no decreasing portion of the curve. d UCD rejects NaCl (58.5 Da) and larger molecules as there is no decreasing portion of the stopped-flow curve for any of the solutes tested. e Summary of the estimated solute rejection (light bars) and single-channel permeability (dark bars) of OmpF WT and the three OmpF mutants (details in Supplementary Figures 3 and 4). The two y-axes represent permeability (black left y-axis) or the molecular weight cutoff data (red right y-axis). Curves shown in panels c and d are averages of 6–10 traces from each stopped-flow light scattering experiment. Each experiment was conducted at least three times with independent vesicle preparations (complete data in Supplementary Methods and Supplementary Figure 3)

Back to article page