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Master clinical medical knowledge at certificated-
doctor-level with deep learning model
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Mastering of medical knowledge to human is a lengthy process that typically involves several

years of school study and residency training. Recently, deep learning algorithms have shown

potential in solving medical problems. Here we demonstrate mastering clinical medical

knowledge at certificated-doctor-level via a deep learning framework Med3R, which utilizes a

human-like learning and reasoning process. Med3R becomes the first AI system that has

successfully passed the written test of National Medical Licensing Examination in China 2017

with 456 scores, surpassing 96.3% human examinees. Med3R is further applied for providing

aided clinical diagnosis service based on real electronic medical records. Compared to human

experts and competitive baselines, our system can provide more accurate and consistent

clinical diagnosis results. Med3R provides a potential possibility to alleviate the severe

shortage of qualified doctors in countries and small cities of China by providing computer-

aided medical care and health services for patients.
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Qualified medical practitioners are in severe shortage in
many countries of the world and medical training is
typically a lengthy procedure. For example, a medical

student usually spends more than 5 years of school study and
then takes a few years of residency training. Though in recent
years, plenty of medical AI algorithms/systems spring up in both
the research and the industry communities, almost all of them are
designed to merely solve some pre-specified medical problems,
such as classifying skin cancer, detecting pneumonia, and pro-
ducing treatments for a few pre-defined cancers or diseases. There
is still lack of an efficient AI-enabled computer model which, like
candidate general practitioners, can automatically learn and
master a wide range of medical knowledge from a large medical
corpus, and apply medical knowledge, concepts, and principles to
solving generic medical problems. The barriers for achieving this
goal mainly include (1) learning such wide range of medical
knowledge from text corpus is still an unsolved challenging
problem in research communities; (2) understanding medical
problems and making reasoning with medical-views at human-
doctor-level is also very difficult for a computer program.

In this study, we propose a novel deep learning model Med3R
(Free Reading, Guided Reading and Multi-layer Reasoning) to
solve these problems. The proposed model employs a human-like
learning and reasoning framework that firstly captures primary
medical knowledge from a large medical corpus with a “Free
Reading” module, then masters more precise knowledge via a
“Guided Reading” phase, and ultimately makes inference/decision
in a “Multi-layer Reasoning” fashion. Med3R were examined by
taking the written test of National Medical Licensing Examination
in China 2017. The results officially reported by National Medical
Examination Center (NMEC)1show that Med3R has successfully
passed the exam and surpassed 96.3% human examinees. Med3R
also can be applied for providing aided clinical diagnosis service
and the experimental results illustrate that the model can provide
more accurate and consistent results compared to human experts
and competitive baselines. Our study shows that deep learning
techniques have potential abilities to master medical knowledge
and provide accurate clinical diagnosis suggestions based on
medical electronic records and that it provides a possibility to
alleviate the severe shortage of qualified doctors in countries and
small cities of the world.

Results
Lab results. Before officially taking NMLEC 2017, we employed
medical experts to produce 7 practice tests to evaluate and ana-
lyze our Med3R system. Each of the 7 practice tests strictly
satisfies all the requirements of NMLEC, such as the number of
questions, question type, distribution of difficulty, and the cov-
erage of medical knowledge etc. A comparison of results of our
proposed Med3R system with a WatsonQA-alike system is pre-
sented in Fig. 1. The results illustrate that our Med3R system
obtained an average accuracy of 0.78 over the 7 practice tests. The

average accuracy is higher than that of a WatsonQA system and is
also much higher than expected successful-passing level (accuracy
of 0.6). To analyze the performance of our layered reasoning
module, we conducted a series of comparison experiments of
which each only uses one of the following reasoning layers:
keypoint reasoning (KR), context reasoning (CR) and global
reasoning (GR). The results, presented in Table 1, demonstrate
that only using one layer of reasoning can achieve a relatively
satisfying average accuracy of 0.67–0.68 (>0.6), but with three
reasoning layers used simultaneously an improved result (an
average accuracy of 0.78) can be obtained. It indicates that the
proposed three reasoning layers are strongly complementary.
Additionally, we also compared our proposed method to several
modern deep learning based reasoning models, such as r-net2,
neural reasoner3, and iterative attention4. The results illustrate
that the performance of our proposed reasoning methods is also
superior to these competitive baselines.

NMLEC 2017 results. Our Med3R was officially entitled by
National Health Commission of the People’s Republic of China
(NHCPRC)5 as a special “examinee” to take the written test of
NMLEC (Supplementary Figs. 1, 2) during Aug 26–27, 2017.
According to the examination result report (Supplementary
Fig. 3) officially offered by NMEC1, the Med3R system success-
fully passed the exam with 456 scores (the passing score is 360).
Results, presented in Fig. 2 and Supplementary Fig. 4, show that
our system has excellent reasoning abilities for solving medical
questions and surpasses 96.3% human examinees. We notice that
the performance (accuracy 0.76= 456/600) in NMLEC 2017 is
very close to the performance (average accuracy of 0.78) in our
testing on 7 practice tests (Fig. 1 and Table 1). To have a sense of
the difficulty of NMLEC 2017 and the generalization ability of our
model, we calculated the similarity degrees (Supplementary
Methods) between questions from NMLEC 2017 and questions
from our training dataset MedQA (more details about the dataset
see Supplementary Methods) with Levenshtein distance6, and the
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Fig. 1 Comparison results of Med3R with WatsonQA on 7 practice tests.
From left to right, “Test 1” means the comparison accuracy on the first
practice test, and “Test 2” means the accuracy on the second practice test,
and so on. The last column indicated by “Mean” is the average accuracy
over the 7 practice tests

Table 1 Comparison of different reasoning methods

Reasoning Method Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Mean

Med3R 0.78 0.76 0.78 0.83 0.74 0.79 0.81 0.78
Med3R (KR only) 0.70 0.63 0.66 0.70 0.64 0.69 0.67 0.67
Med3R (CR only) 0.68 0.63 0.68 0.72 0.68 0.69 0.70 0.67
Med3R (GR only) 0.69 0.64 0.69 0.73 0.66 0.66 0.69 0.68
Iterative Attention4 0.62 0.54 0.61 0.65 0.57 0.64 0.59 0.61
Neural Reasoner3 0.50 0.48 0.49 0.52 0.52 0.53 0.52 0.50
R-net2 0.51 0.49 0.54 0.54 0.54 0.54 0.55 0.52

Note: KR only: only using Keypoint Reasoning, CR only: only using Context Reasoning, GR only: only using Global Reasoning
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results (Supplementary Fig. 5) show that there exist very few
questions having strong textual similarity to questions in the
training dataset.

Real-world results. Medical health service and healthcare is
severely unbalanced nation-wide in China. For example, coun-
tries and small cities of China suffer from the long-term shortage
of qualified doctors. Our proposed framework Med3R provides a
potential possibility for providing medical cares and health ser-
vices using computer models. After successfully passing NMLEC
2017, the model was applied for aided clinical diagnosis in several
trial areas of China, such as Hefei Luyang District. To evaluate
our system’s performance, we conducted a comparison with
human experts. 5000 samples of Electronic Medical Record
(EMR) are collected from the trial areas and annotated by four
board-certified clinicians (Supplementary Table 1). The collected
EMR sample (Supplementary Fig. 6) mainly consists of three
parts: (1) chief complaint, (2) history of present illness, and (3)
disease code. For each sample, chief complaint and history of
present illness are concatenated as the input of our system and
disease code is the label. The tested 5,000 EMR samples refer to
50 diseases (Supplementary Table 3), 100 samples for each dis-
ease. When the NMLEC trained model is directly used on EMR
dataset for providing diagnosis, we observed a performance
(totally accuracy of 92.04%) comparable to human experts
(Supplementary Fig. 7). As we know, the writing style of EMRs
data is different from that of NMLEC. We used another 10,000
EMR samples for a further adaption (fine-tuning) of the Med3R
model. The comparison results (also tested on the annotated
5000 samples), presented in Fig. 3, show that the fine-tuned
Med3R system surpassed medical experts’ level at mean accuracy
on diagnosis results over the tested 50 diseases. The comparison
results of each tested disease, presented in Fig. 4, illustrate that
our system is more robust and consistent than human experts.

More details about the accuracy of the four medical experts over
the tested 50 diseases are given in Supplementary Fig. 8.

Discussion
In this work we have developed a deep learning model, based on a
two-stage representation learning module “Free Reading” and
“Guided Reading” and a reasoning module “Multi-layer Rea-
soning”, that has surpassed the vast majority of human examinees
(96.3%) in the written test of NMLEC 2017 (an essential quali-
fying examination for being certified doctors in China) and also
achieved higher accuracy than human experts on the clinical
diagnosis test based on real EMR data. This study sheds sub-
stantial light on mastering clinical medical knowledge by using
deep learning techniques. We have extended the modern
embedding learning techniques into a more effective repre-
sentation learning schema, by combining the manners of unsu-
pervised learning and supervised learning, for acquiring medical
knowledge from a large semi-structured medical corpus. We have
presented a new reasoning module for answering medical ques-
tions or giving clinical diagnoses with a multi-scale fashion that
combines the merits of reasoning at some key points, at a salient
sentence, and at the whole supporting evidence material. This
reasoning module can achieve robust and consistent performance
in the medical examination test and the real clinical diagnostic
test. Though there is a very long way to build an AI-enabled
system which can deal with all kinds of medical problems as
human medical experts, the work presented in this paper provides
a potential possibility to improve medical conditions for medi-
cally underserved areas by providing computer-aided diagnosis
suggestions or medical care services for patients.

Methods
Med3R. The whole framework of Med3R is presented in Fig. 5, which consists of
three parts,“Free Reading”, “Guided Reading”, and “Multi-layer Reasoning”. The
parts of “Free Reading” and “Guided Reading” play a medical knowledge
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Fig. 2 The results of Med3R system participating in the written test of NMLEC 2017. Our Med3R achieved a 456 scores much higher than the passing-
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representation learning role, and the “Multi-layer Reasoning” is a reasoning
module for making inference for medical questions or clinical diagnosis. In the rest
of this section, we will introduce these modules in detail.

Free reading and guided reading. Building knowledge graph via using triple
(entity_a, relation, entity_b) as the basic element is a popular manner for repre-
senting knowledge7–9. But, this manner is very labor-intensive and time-
consuming. Though there are some techniques aiming for automatically extracting
entities and relations10–16, building a usable knowledge graph without mass human
labor is still impossible. More importantly, this manner of knowledge repre-
sentation lack feasibility and flexibility for building modern machine learning
models, especially involving deep learning algorithms. Besides the explicit knowl-
edge representation methods, implicitly embedding knowledge into continuous
vectors, also called embeddings17–19, is another potential candidate. However, the
commonly used word embeddings only depict the dependency of local context;
thus they are promoted to capture common shallow semantic information20, but
insufficient to discover rich medical knowledge hidden in large medical corpus21.
Here, we generalize the implicit knowledge learning and representing method into
a two-step fashion: “Free Reading” followed by “Guided Reading”.

In the “Free Reading” phase, a series of unsupervised learning algorithms are
trained over large medical corpus to produce various kinds of embeddings. The
generalized embedding learning schema can be described by

max
X

<sa ;sb>2Ri

PðsbjsaÞ ¼
max

Ei

X

<sa ;sb>2Ri

Fið<EiðsaÞ; EiðsbÞ>Þ; ð1Þ

where sa, sb can be words or concepts, Ri is a predefined relationship which bears
some semantic and medical knowledge, Ei is a corresponding embedding space in
which continuous vectors, learned by a proper function Fi (Supplementary
Methods), are used to depict medical knowledge (examples see Fig. 6(a–c)). In this
study, we totally used seven kinds of relationships based on the semi-structures of
medical textbooks for multi-embeddings learning (Supplementary Methods).
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In the “Guided Reading” phase we try to learn deeper and more subtle medical
knowledge with supervised learning methods by using a large dataset of medical
question-answers (MedQAs) as the training corpus. Given a medical question, we
first get digest (a set of pieces of evidence related with the given question) through a
“Fast Reading” process (Supplementary Methods and Supplementary Fig. 9) and
then perform “Deep Reading”, supervised by the correct answer, over the digest
and the given question. That is, PðatruejQ; evidenceÞ>PðaijQ; evidenceÞ, where ai 2
Afalse (a set of candidates but not including the correct answer). We learn a set of
embeddings that capture reasoning knowledge on the MedQAs by the following
equation

FrðErðQ; digest; atrueÞÞ>FrðErðQ; digest; aiÞÞ; ð2Þ

where Er is a reasoning embedding space which maps the question Q, digest, and
candidates into reasoning embeddings, and Fr is a function to measure the
reasoning degree from question to candidates over digest. By supervised learning,
we can capture deeper medical knowledge such as referring to disease from given
complex clinical symptoms. Additionally, we enrich medical knowledge learned
from “Free Reading” with delta-embedding learning Ei → Ei+ EΔ. We learn a delta
embedding EΔ on top of a set of embedding Ei obtained by “Free Reading”, with
structured regularization22, 23

loss ¼ losstask þ c EΔk k21 ð3Þ

losstask is a measure of the loss defined on the task (Here, the task is the medical
question answering trained on MedQA). The embeddings are fine-tuned under
supervision to give more precise representations. For example, the representation
of medical term “nephritis” is turned into different representations which
correspond to lupus nephritis, interstitial nephritis, glomerulus nephritis, allergic
purpura nephritis, and pyelonephritis, respectively (Fig. 6d).

Multi-layer reasoning. Here, we introduce a novel and robust multi-level rea-
soning cell based on neural networks. It reads questions and performs analysis and
reasoning to answer the question using learned medical knowledge. The three level
of reasoning are Keypoint Reasoning, Context Reasoning, and Global Reasoning.

The layered architecture mimics a human’s reasoning and decision-making pro-
cess. The lower level layers first utilize simple facts to perform direct and quick
reasoning, then the latter layers take more information into consideration and
perform reasoning that is more complex, indirect and obscure. By integrating
reasoning from three layers we can produce a robust evaluation for all candidates
of a given question and make a right choice (Fig. 7). Given a medical question, we
first determine possible answers based on key points in the question.

Q ! fw1;w2; :::;wig�!
Ei atrue; ð4Þ

where {w1, w2…wi} are key points extracted from the question Q, and Ei are
embeddings obtained from “Free Reading” and “Guided Reading”. In our Keypoint
Reasoning network, we will not explicitly extract key points but assign them more
importance with attentive strategies (Supplementary Methods and Supplementary
Fig. 10). In Context Reasoning network we analyze the question using contexts and
external knowledge from text (evidence from digest). The network reads medical
text and extract a salient evidence from the digest which is the strongly relevant to
answering the question:

digest ! ssalient �!
Q

atrue; ð5Þ

where ssalient is a salient evidence/sentence extracted from digest. We measure the
degree by which the evidence supports the statement in the question, using
attentive sentence modeling (Supplementary Methods and Supplementary Fig. 11).
For some complex and difficult questions, there may be not any piece of salient
evidence to directly support a true answer. We need to integrate a series of weak
evidence in the digest to form a new strongly supporting evidence snew to determine
the true answer

digest�! snew �!Q atrue ð6Þ

To realize this purpose, we introduce a global reasoning layer which examines
all the documents in the digest, considers all pieces of possibly related information
and makes a deep fusion to glue independent weak pieces of evidence into a strong
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one (Supplementary Methods and Supplementary Fig. 12). This reasoning layer is
used in conjugate with the context reasoning layer, and the whole framework can
be trained in an end-to-end fashion using gradient descent.

Relation to WatsonQA. IBM Watson is a hallmark in open-domain question
answering system (shortly called WatsonQA) with witnessed success. What makes
it remarkable is its massively engineered architecture based on classical NLP
pipeline24–29 and statistical approaches30. The sophisticated system involves hun-
dreds of algorithms in a multi-staged fashion, which performs question
analysis31, 32, candidate generation33–35, evidence gathering and analysis36, answer
ranking37, and other engineering efforts38–40. The system extensively uses par-
sing29, semantic analysis31, 32, ranking algorithms26, 37, and feature engineering24–
29, 36. Our proposed Med3R takes a different perspective which factors QA into two
parts: knowledge representation learning and reasoning. Both parts are based on
deep learning algorithms, and are learned end-to-end to fully exploit the repre-
sentation power of deep neural networks and avoid the hassle of classical NLP
pipelines.

Code availability. Code used for this study is available from the corresponding
author upon reasonable request. Exceptions are the medical knowledge repre-
sentation learning source code and the global reasoning source code which are not
publicly available an restricted by iFLYTEK Research. However, all experiments
and implementation details are described in sufficient detail in the Methods and in
the Supplementary materials.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request. Exceptions are the medical corpus and question sets,
which were used under license for the current study. These data are only available with
permission from People’s Medical Publishing House (for medical corpus) and National
Medical Examination Center (for question sets).
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Question: A male patient, aged 20 years old. He had diarrhea 3 weeks ago, and 2 days later the
symptoms improved but he did not mind. 1 days ago in the morning he felt weakness in limbs and
pains in double legs. Gradually illness turned more serious. His family found his double eyelid cannot
fully close, no dysphagia, and urinary and stool were normal. Admission examination: clear
consciousness, speak normally, bilateral peripheral facial paralysis, limb muscle strength II, low
muscle tension, no obvious sensory disturbance. This patient is most likely diagnosed as: (A)

(A) Guillain-Barre syndrome (B) Parkinson's disease (C) Purulent meningitis
(D) Myasthenia gravis (E) Acute myelitis

Neurology - spinal diseases - acute myelitis
Acute myelitis (acute myelitis) refers to a variety of infections caused by acute transverse myelitis lesions from
autoimmune reactions, also known as acute transverse myelitis, which is the most common clinical myelitis. It
is characterized by lesions paralysis below the plane limbs, conduction bundle sensory dysfunction and urinary
and stool disorders.

Evidence 1
Neurology - peripheral neuropathy - spinal neuropathy - Guillain - Barre syndrome - etiology
The infection rate of cj in gbs patients with diarrhea as the prodromal symptom is...

Evidence 2
Neurology - peripheral neuropathy - spinal neuropathy - Guillain - Barre syndrome - type and diagnosis - aidp
Most of the first symptom is limb symmetry delayed muscle weakness, gradually from...

Evidence 3
Neurology - peripheral neuropathy - spinal neuropathy - Guillain - Barre syndrome - type and diagnosis - aidp
Cerebral nerve involvement in bilateral facial paralysis is the most common, ...
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Had diarrhea
Weakness in limbs

Bilateral peripheral
facial paralysis

Weaknessin limbs

Double eyelid
cannot fully close

Guillain-Barre syndrome limb weakness, paralyzed bilateral, facial paralysis
Parkinson's disease          tremor, muscle stiffness, movement slow, postural instability, old-aged
Purulent meningitis           fever, headache, vomiting, apathetic
Myasthenia gravis skeletal weakness, easy to fatigue, eyelid drooping, blurred vision
Acute myelitis            limb numbness, weak strength, paralysis

Fig. 7 Example of multi-layer reasoning process. Take a clinical medical question for example, key points of the question are extracted and encoded by the
keypoint reasoning layer to determine candidate answers A, D, and E; in the context reasoning layer, a salient evidence is used to exclude the incorrect
answer E at sentence level; and in the global reasoning phase, more related pieces of evidence are analyzed to form a new salient one to support the true
answer A
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