Fig. 3
From: Customizing supercontinuum generation via on-chip adaptive temporal pulse-splitting

Supercontinuum spectral intensity optimization at selected wavelengths. a Spectral intensity map measured at the highly-nonlinear fibre output, generated by a single pulse seed as a function of its average power. b Maximal spectral intensity reached as a function of the selected optimization wavelength, considering either a single pulse seed case (dashed black line—i.e. the maximal intensity retrieved from panel a), or using the pulse-splitting optimization technique (with up to 16 pulses—red circles) for the same power budget—see Methods. c Spectral intensity enhancement (relative to the single pulse seed case as a reference), for pulse-splitting performed with 16 (red dots) or 32 (blue diamonds) seed pulses. For reference, the input pump spectral location is shown as grey shadings in (b) and (c). d–f Examples of spectra obtained following intensity maximization at target wavelengths (blue shadings), using single pulse seeding (dashed black lines), or pulse-splitting optimization (red lines—with up to 16 pulses). The insets show the autocorrelation traces of the corresponding, optimal input pulse trains and average powers Pin