Table 1 Photovoltaic performance and stability of 2D-MD-3D perovskites

From: Dimensionality engineering of hybrid halide perovskite light absorbers

Dimensions

Absorber

PCE (%)

PCE (s) (%)a

Eg (eV)

Stability test (h)b

Ref.

1D

      

  EA/PA

EAPbI3

0.26

2.2

 

88

PAPbI3

0.016

2.4

  

2D

      

  BA/BdA/PEI/PEA

BA2PbI4

0.124

2.3

 

89

[NH3(CH2)4NH3]PbI4

1.08

2.37

T74 = 48

90

(PEA)2PbBr4

3.0

 

68

(PEI)2PbI4

2.3

 

91

MD

      

 Class I

      

  BA/MA

(BA)2CsPb2I7

4.84

2.2

T92 = 720

89

(BA)2(MA)2Pb3I10

4.02

1.89

 

12

(BA)2(MA)2Pb3I10

11.44

61

(BA)2(MA)3Pb4I13

8.79

6.8

1.65

 

66

(BA)2(MA)3Pb4I13

12.51

1.66

T70  = 2050

T100 = 2250 (Sealed)

61

(iso-BA)2(MA)3Pb4I13

10.63

6.43

1.74

 

63

(BA)2Cs3x(MA)3-3xPb4I13c

13.68

1.62

T89 = 1400

62

(BA)2(MA)4Pb5I16

8.05

1.6

 

92

(BA)2(MA)4Pb5I16

8.71

1.83

 

38

  HA/MA/FA/Cs

HA2MAPb2I7

0.34

  

64

HA2FAPb2I7

1.26

  

64

HA2CsPb2I7

0.10

  

64

  PEI/MA

(PEI)2(MA)6Pb7I22 

10.08

1.62

T90 = 500

35

  PEA/MAd

(PEA)2(MA)2Pb3I10

4.73

2.1

 

11

(PEA)2(MA)2Pb3I10

3.72

1.94

T70 = 1440

93

(PEA)2(MA)9Pb10Br29

2.3

68

(PEA)2(MA)49Pb50Br151

8.5

2.2

68

(PEA)2(MA)59Pb60I181

15.4

T74 = 1440 (N2);

T85 = 336 (55%)

34

  ALAe/Cs/FA

ALA2(MA0.14FA0.81Cs0.05)9Pb10(I0.85Br0.15)29

16.5

T95 = 680 (30–40%, dark)

49

 Class II

      

  PEI/MA

(MAPbI3)1−x[(PEI)2PbI4]x(x = 0.02)

15.2

 

T84 = 336

94

  BA/FA/Csf

(BA)0.09(FA0.83Cs0.17)0.91Pb(I0.6Br0.4)3

17.2

17.3

1.72

T80 = 3,880 (sealed)

T80 = 1005

53

(BA)0.05(FA0.83Cs0.17)0.95Pb(I0.8Br0.2)3

20.6

19.5

1.61

53

  AVA(3%)/MAf

(AVA)2PbI4/MAPbI3

14.6

1.69

T60 = 300

58

(AVA)2PbI4/MAPbI3 module

10.10

 

T100 > 10,000 (sealed)

58

  IC2H4NH3/MA/FA ion exchangef

(IC2H4NH3)2(MA)x(n−1)(FA)y(n−1)PbnI3n+1g

9.03

1.63

 

59

  Interface/morphology (LPK)

(PEA)1−x(FA)xPbI3 (MFA/MPEA= 40)f

17.71

17.3

1.522

T90 = 384

56

(PEI)2PbI4 /MAPbI3

15.37

 

T90 = 200

91

MAPbI3/(PEA)2Pb2I4 3D–2D graded

19.89

19.85

1.53

T60 = 720

42

(PEA2PbI4)0.017(MAPbI3)

19.8

17.8

T92 = 1008

95

MAPbI3/BA2MA2Pb3I10

11.49

  

54

MAPbI3/(PEA)2(MA)4(Pb5I16)

16.84

 

T92 = 456

54

  2D passivationf

FEAPbI3/MAPbI3

17.9

 

T92 = 2880

40

BzA-FAPbI3 (benzylammonium)

19.2

19.0

1.48

T50 = 3000

51

BA-treated MAPbI3

19.56

19.29

1.54

T96 = 100 (95 °C, N2, dark)

41

(MA)1−2x(EDA)xPbI3 (x = 0.008)

18.6

18.1

1.59

T75 = 72

55

NH3I(CH2)8NH3I (C8)

17.60

57

3D

      

 Mono-ions

      

  FAPbl3

 

13.24

1.48

T0 = 200 (light) T90= 500 (85 °C, dark)

96, 97

  MAPbI3

 

16.1

1.56

T95=1440 (25 °C, 30–50% RH)

98

  CsPbI3

 

1.8

5.6

10.5

1.73

T85 = 840 (dark, dry box)

89, 99, 100

  MAPbBr3

 

8.1

2.2

T93 = 1000 (ambient condition)

68, 101

 Mixed-ions

      

  FA1−xMAxPbI3

 

20.65

T85= 500 (light)

T90= 500 (85 °C, dark)

97

  CsFAMAPbI3−xBrx

 

20.4

20.5

T95= 1000 (60 °C)

10

  RbCsFAMAPbI3

 

21.8

21.6

T95= 500 (85 °C, 1 Sun)

102

  CsPbI2Br

 

7.7

6.7

T87= 250 (85 °C and 85% RH)

87

  CsPb0.9Sn0.1IBr2

 

11.33

1.79

T100 = 1750 (sealed, RT)

T100 = 336 (sealed, 100 °C)

T85 = 50 (unsealed RT, 50–60% RH)

103

  1. aStabilized power output under non-operating conditions
  2. bThe time span to 80% of the post burn-in decay (T80), obtained under different lifetime test conditions
  3. cx = 0.05
  4. dQuasi-3D with large n value
  5. eAllylammonium
  6. fNo observable new/alien phase
  7. g4 min. dipping time