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Genome-wide meta-analysis implicates mediators
of hair follicle development and morphogenesis in
risk for severe acne
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Acne vulgaris is a highly heritable common, chronic inflammatory disease of the skin for

which five genetic risk loci have so far been identified. Here, we perform a genome-wide

association study of 3823 cases and 16,144 controls followed by meta-analysis with summary

statistics from a previous study, with a total sample size of 26,722. We identify 20 inde-

pendent association signals at 15 risk loci, 12 of which have not been previously implicated in

the disease. Likely causal variants disrupt the coding region of WNT10A and a P63 tran-

scription factor binding site in SEMA4B. Risk alleles at the 1q25 locus are associated with

increased expression of LAMC2, in which biallelic loss-of-function mutations cause the

blistering skin disease epidermolysis bullosa. These findings indicate that variation affecting

the structure and maintenance of the skin, in particular the pilosebaceous unit, is a critical

aspect of the genetic predisposition to severe acne.
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Acne vulgaris is an inflammatory disease of the skin, pri-
marily affecting the face, chest and back. The biological
mechanisms that lead to lesion development are poorly

understood, but involve a complex interplay between sebum
production, follicular keratinisation, inflammation, and coloni-
sation of pilosebaceous follicles by Propionibacterium acnes1. The
characteristic inflammatory papules, pustules and nodules typi-
cally first develop during puberty, may persist for decades and
leave disfiguring scars in up to 20% of patients. Acne can have
severe emotional and psychological consequences and has been
associated with depression, unemployment, suicidal ideation and
suicide itself1. Severe acne is typically treated with topical and
systemic agents that suppress the microbiome repertoire or the
activity of sebaceous glands. The treatment regimes are often
ineffective and poorly tolerated, and there remains a substantial
unmet medical need.

Evidence of a genetic component to acne susceptibility is well
established2 and previous genome-wide association studies
(GWAS) of severe acne have identified three genomic loci har-
bouring alleles that are associated with the disease in the Eur-
opean population3, and two in the Han Chinese population4.
These loci have provided insight into the biological mechanisms
that underlie disease pathogenesis, including a potential role
for components of the TGFβ pathway.

In the current study, we further delineate the genetic suscept-
ibility of severe acne through the identification of genetic varia-
tion at 15 genomic loci that contribute to disease risk.
Investigation of the consequence of the associated alleles at these
loci indicates that the contribution to acne susceptibility may be,
at least in part, mediated through variation in the structure and
maintenance of the pilosebaceous unit in the skin.

Results
Genome-wide association study and meta-analysis. To investi-
gate the genetic basis of acne we have performed a GWAS of
3823 severe acne cases, recruited through a network of hospital-
based dermatologists within the United Kingdom, and 16,144
unselected population controls (Supplementary Table 1). Fol-
lowing quality control and genome-wide imputation we tested

more than 7.4 million SNPs for association with acne. At the
three loci (1q41, 5q11.2 and 11q13.1) harbouring acne-associated
alleles in an independent UK acne study population3, we
observed strong evidence of association with a consistent direc-
tion and magnitude of effect as was previously reported (Table 1,
Supplementary Table 2). However, we did not replicate the
associations at 1q24.2 or 11p11.2 described in the Han Chinese
population4, highlighting potential trans-ethnic differences in the
genetic contributors to acne susceptibility (Supplementary
Table 2).

We undertook a meta-analysis using summary statistics from
this newly performed GWAS and the previously published
GWAS of severe acne in the UK population3, yielding a combined
sample size of 5602 severe acne cases and 21,120 population
controls (Methods, Supplementary Figure 1). We observed
moderate inflation of test statistics (λGC= 1.09, Supplementary
Figure 2) but LD score regression indicated that this inflation is
driven by trait polygenicity rather than confounding bias (LD
score regression intercept= 1.025). We observed genome-wide
significant association with acne susceptibility at 15 independent
genomic loci, of which 12 have not been reported previously
(Table 1, Supplementary Figure 1). The magnitude and direction
of effect of the lead variant at each of the observed risk loci are
consistent between the two studies (Supplementary Figure 3). To
determine the presence of statistically independent associations
with disease risk at each of these loci, we undertook a series of
stepwise conditional analyses. Evidence for a second conditionally
independent association signal was observed at three loci (2q35,
11q13.1, and 15q26.1) with evidence for three distinct SNP
association signals at 1q41 (Supplementary Table 3), giving a total
of 20 independent acne associations across the 15 loci. There is no
evidence of epistasis between the associated loci.

Investigation of associated loci. We noted that one of the newly
identified acne susceptibility loci is located within the common ~
3.8 Mb5 inversion at 8p23.1 (rs28570522, OR= 1.14, 95% CI
1.10–1.20, P= 1.31 × 10-9, Table 1). The inversion region displays
extended linkage disequilibrium (LD), driven by suppression of
local recombination between the non-collinear regions in

Table 1 Variants with the strongest evidence of association in each of the 15 acne-associated loci

SNP ID Chr Position
(hg19)

Band RA PA RAF
cases

RAF
controls

Navarini P Navarini OR
(95% CI)

New
GWAS P

New GWAS OR (95%
CI)

Meta P Meta OR
(95% CI)

Implicated
gene

rs10911268 1 183,122,718 1q25.3 C A 0.63 0.60 0.002661 1.13 (1.04–1.23) 2.44 × 10-
10

1.19 (1.13–1.25) 3.88 × 10
−12

1.17 (1.12–1.22) LAMC2

rs788790 1 202,289,606 1q32.1 C A 0.53 0.50 7.41 × 10-5 1.17 (1.08–1.26) 1.96 × 10-5 1.12 (1.06–1.17) 9.39 × 10
−9

1.13
(1.09–1.18)

LGR6

rs1256580 1 219,199,380 1q41a C G 0.18 0.15 0.00222 1.17 (1.06–1.30) 1.12 × 10-9 1.23 (1.15–1.31) 1.23 × 10−11 1.21 (1.15–1.28) TGFB2
rs2901000 2 60,501,216 2p16.1 A G 0.46 0.43 1.04 × 10-5 1.19 (1.10–1.29) 2.53 × 10-8 1.16 (1.10–1.22) 1.50 × 10

−12
1.17 (1.12–1.22) BCL11Ab

rs1092479 2 121,769,437 2q14.2 C G 0.30 0.27 0.000224 1.17 (1.08–1.28) 3.60 × 10-5 1.12 (1.06–1.19) 4.30 × 10
−8

1.14
(1.09–1.19)

GLI2b

rs121908120 2 219,755,011 2q35 T A 0.98 0.97 0.001637 1.66 (1.21–2.27) 1.40 × 10-10 2.10 (1.67–2.63) 1.82 × 10
−12

1.94
(1.61–2.33)

WNT10A

rs4487353 4 124,253,789 4q27–28.1 G A 0.36 0.33 0.000115 1.17 (1.08–1.27) 3.83 × 10-6 1.13 (1.07–1.19) 2.32 × 10−9 1.14
(1.09–1.20)

FGF2

rs629725 5 52,631,067 5q11.2a T C 0.37 0.33 4.69 × 10
−5

1.18 (1.09–1.28) 8.22 × 10-12 1.20 (1.14–1.27) 1.90 × 10
−15

1.20
(1.14–1.25)

FST

rs158639 5 55,611,710 5q11.2 A G 0.30 0.27 0.007973 1.12 (1.03–1.22) 9.22 × 10-7 1.15 (1.09–1.21) 2.70 × 10
−8

1.14
(1.09–1.19)

rs7809981 7 40,874,376 7p14.1 T G 0.26 0.24 0.00213 1.15 (1.05–1.26) 3.74 × 10-6 1.15 (1.08–1.22) 2.82 × 10
−8

1.15
(1.09–1.20)

rs28570522 8 10,630,568 8p23.1 A G 0.40 0.37 0.000821 1.14 (1.06–1.24) 4.206 × 10-
7

1.14 (1.09–1.21) 1.31 × 10−9 1.14
(1.10–1.20)

rs2727365 11 13,111,484 11p15.3–15.2 G A 0.36 0.32 0.000426 1.16 (1.07–1.25) 1.08 × 10-10 1.19 (1.13–1.25) 2.28 × 10
−13

1.18 (1.13–1.23)

rs144991069 11 64,827,708 11q13.1–13.2a A T 0.02 0.01 8.91 × 10-6 2.08
(1.50–2.86)

1.01 × 10-8 1.85 (1.50–2.28) 5.00 × 10
−13

1.91
(1.60–2.28)

OVOL1,
MAPK11

rs34560261 15 90,734,426 15q26.1 C T 0.86 0.83 0.000445 1.25 (1.10–1.41) 1.82 × 10-12 1.35 (1.24–1.47) 5.89 × 10
−15

1.32
(1.23–1.41)

SEMA4B

rs28360612 22 24,883,218 22q11.23 T A 0.74 0.72 0.004014 1.14 (1.04–1.25) 7.12 × 10-7 1.16 (1.09–1.23) 1.05 × 10−8 1.15 (1.10–1.21) SPECC1L

Chr: chromosome, RA: risk allele, PA: protective allele, RAF: risk allele frequency, OR: odds ratio, 95% CI: 95% confidence interval
aPreviously reported acne susceptibility locus (Navarini et al.)
bImplicated through relationship to the sparse hair (MP:0000416) gene-set by DEPICT
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inversion heterozygotes. This extended LD is reflected in the
observed pattern of acne association in the region, with strong
evidence of association observed across multiple SNPs spanning
the entire inversion region (Supplementary Figure 4). To further
investigate the allelic nature of acne susceptibility at the 8p23.1
inversion, we inferred inversion genotypes in our study popula-
tion. Association analysis of the inversion status indicated that the
derived non-inverted haplotype (orientation consistent with the
reference genome) is associated with increased acne risk (OR=
1.11, 95% CI 1.06–1.16, Pmeta= 2 × 10-6) and conditioning on the
inversion genotype reduces the strength of the observed
SNP associations (rs28570522, OR= 1.12, 95% CI 1.06–1.19,
Pconditional= 0.00011). Taken together these data suggest that the
causal acne risk allele at this locus resides more commonly on the
derived non-inverted background. This orientation of the inver-
sion haplotype has also been previously reported to be associated
with susceptibility to SLE6 and rheumatoid arthritis7, but a pro-
tective effect has recently been observed in a GWAS of neuroti-
cism8. It is also of potential relevance that the inversion locus
harbours the copy number variable β-defensin gene cluster. The
transcriptional activity of this cluster has been previously
demonstrated to be upregulated in acne lesions9.

To highlight putative causal variants at each of the 14 other
susceptibility loci, we performed Bayesian summary statistic fine-
mapping to identify credible sets of variants likely to underlie the
observed association signals (Methods and Supplementary
Table 4). Two association signals mapped to single variants
with > 50% posterior probability of being causal: rs121908120
(Pcausal= 0.88), a missense variant in WNT10A (Fig. 1 and
Supplementary Table 4), and rs34560261 (Pcausal= 0.66) located
in intron 1 of SEMA4B (Fig. 2 and Supplementary Table 4). The
missense allele (p.F228I) in WNT10A has a frequency of 0.03 in
the control population and exerts a protective effect on acne
(Table 1). WNT10A encodes a member of the Wnt family of
secreted signalling proteins that contribute to the regulation of
cell fate and patterning10. Notably, Wnt-10a itself is strongly
expressed in the dermal papilla within the pilosebaceous unit
during the anagen phase of hair growth and is expressed in the
dermal condensate and the adjacent follicular epithelium11. The
p.F228I missense allele was originally identified as the most
frequently observed causal allele in a recessive form of ectodermal
dysplasia (OMIM: 257980) characterised by abnormal develop-
ment of ectodermal derivatives including hair, teeth, sweat glands
and nails12. Refinement of the phenotypic effects of the p.F228I
allele in this clinical context revealed that both dry skin and
sparse hair are recurrently observed in homozygous individuals,
but also often in heterozygous carriers13. The reduced hair follicle
activity and sebum production that results from a disruption of
Wnt-10a activity is therefore consistent with the observed
protective effect of the p.F228I allele on acne development. The
recessive ectodermal dysplasia caused by biallelic disruption of
WNT10A is typically both more severe and widespread in males
than in females13. In our acne study population the p.F228I allele
has a strong effect in both males and females (ORmales= 2.86,
95% CI= 2.08–3.94, P= 1.12 × 10−10 and ORfemales= 1.53, 95%
CI 1.22–1.92, P= 0.00027), but notably the observed effect is
significantly larger in males than females (P= 0.0018, Fig. 1). We
also note a comparable sex bias in effect size at the other
conditionally independent acne association at this locus
(rs72966077; ORmales= 1.56, 95% CI= 1.31–1.86, P= 6.02 × 10−7

and ORfemales= 1.18, 95% CI 1.02–1.36, P= 0.024). However, we
do not observe a sex bias in observed effect sizes at any of the
other 14 acne associated loci (Supplementary Figure 5), nor do
we identify any additional sex-specific genome wide significant
acne signals.

The second putative causal variant identified by the fine-
mapping approach is rs34560261, located in intron 1 of SEMA4B
at 15q26.1. Whilst little is known about the biological function of
SEMA4B itself, the variant is located within a site at which the
TP63 transcription factor has been demonstrated to bind in
keratinocytes14 within a broader region of DNAase hypersensi-
tivity (Fig. 2). The binding site harbours a conserved sequence
motif that is disrupted by rs34560261 (Fig. 2). The protective
minor allele introduces a thymine nucleotide at the position of an
invariant cytosine (Fig. 2), which is predicted to ablate the TP63-
binding potential of this sequence (Fig. 2, risk allele sum
occupancy score= 6287.91, protective allele sum occupancy
score= 2.18). The transcription factor TP63 is critically impor-
tant for epidermal morphogenesis including hair follicle devel-
opment15 and rare mutations in the TP63 gene have also been
described in monogenic ectodermal dysplasia syndromes that
have substantial phenotypic overlap with ectodermal dysplasias
resulting from mutation of WNT10A16. There is strong evidence
that the acne association signal at this locus and a skin eQTL for
SEMA4B colocalise (Pcoloc= 0.98), with the allele that ablates the
TP63-binding motif associated with a reduction in SEMA4B
expression in skin and conferring protection against severe acne.

Across the remaining 12 loci, statistical fine-mapping did not
clearly resolve the association signals to individual causal variants.
However, through regional colocalisation with skin eQTLs
(Methods and Supplementary Table 5) we were able to identify
putative causal genes at additional acne risk loci including a series
of genes with established roles in skin biology and pathology. An
eQTL for LAMC2 in skin colocalises with the acne association
signal at 1q25.3 (Pcoloc= 0.97). LAMC2 encodes a component of
the extracellular matrix glycoprotein Laminin-5 that is strongly
expressed in the epithelia of all tissues17. Biallelic loss-of-function
alleles in LAMC2 are an established cause of generalised severe
junctional epidermolysis bullosa (OMIM: 226700), an extreme
form of inherited skin and mucous membrane fragility and
blistering that is associated with a reduced life expectancy18. In
contrast, at this locus the acne risk haplotype is associated with
increased expression of LAMC2 in the skin, providing insight into
the phenotypic consequence of the opposite extreme of an allelic
series in this gene. Colocalisation further implicated genes with
established roles in skin biology at several other newly identified
acne susceptibility loci: LGR6 at 1q32.1, which encodes a
glycoprotein hormone receptor that is observed to be strongly
expressed by cells in the stem cell niche within the pilosebaceous
unit in mice;19 FGF2 at 4q28.1, which has established roles in
wound healing and scarring, and SPECC1L at 22q11.23, which
has previously been identified as the site of rare pathogenic
mutations in forms of oblique facial clefting (OMIM: 600251).
OVOL1 was previously suggested as a potential candidate gene at
the acne susceptibility locus at 11q13.1–13.2. However, we note a
strong colocalisation between the acne association and an eQTL
for MAP3K11, which encodes a stress-responsive protein kinase;
this offers an alternative potential biological mechanism through
which acne susceptibility is mediated by variation at this locus.

Implicated biological pathways. The identification of this series
of putative causal genes with established roles in skin and hair
biology highlights the importance of pilosebaceous unit devel-
opment and morphogenesis in the aetiology of acne. Taken in this
context, the implication of genes within the TGFβ pathway at
acne risk loci previously reported in the UK population poten-
tially adds further support to the relevance of this biological
process. The TGFβ pathway is involved in a range of biological
processes across tissue and cell types and both TGFB2 (1q41) and
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FST (5q11.2) have been identified as mediators of the morpho-
logical changes that occur through the hair follicle cycle20,21.

To identify candidate causal genes in these or other related
biological pathways at remaining acne susceptibility loci, we
deployed a bioinformatics approach to establish whether an
enrichment of genes with related biological function was observed

(Methods). The approach was applied to the 15 loci harbouring
genome-wide significant associations and a further 54 loci at
which allelic associations with acne meeting a less stringent
threshold of statistical significance (P < 1 × 10-5) were observed
(Supplementary Table 6). Enrichment (FDR < 0.05) of 15 gene-
sets was observed, including gene-sets relating to branches of the
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SNP (rs121908120, WNT10A:p.F228I). b Location of the rs121908120, p.F228I with respect to the WNT10A gene structure. c Partial three dimensional
predicted protein structure incorporating phenylalanine (risk, left) or isoleucine (protective, right) at position 228 (SWISS-MODEL repository). d Forest
plot indicating the difference in the effect size of the acne association between males and females for rs121908120. Error bars represent 95% confidence
intervals for estimated odds ratios
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mammalian phenotype ontology tree that describe abnormal
epidermal and ectodermal development (Supplementary Table 6);
these implicate candidate causal genes with related biological
functions at otherwise unresolved acne risk loci, including
BCL11A at 2p16.1 and GLI2 at 2q14.2 (Table 1, Supplementary
Table 6). Despite limited direct evidence implicating immune-
related genes and pathways in acne susceptibility, estimation of
genetic correlation of severe acne with 175 other traits (Methods)
reveals evidence of genetic correlation with inflammatory bowel
disease (Supplementary Data 1)22 suggesting that there may be
elements of shared genetic aetiology with this immune-mediated
disease.

Discussion
The current study provides a substantial advance in our insight
into the genetic susceptibility and pathogenic mechanisms that
contribute to the development of severe acne, increasing the
number of genomic loci at which genetic variation is robustly
associated with acne susceptibility in the European population
from 3 to 15. Approximately 22% of the phenotypic variance is
explained by variants across the genome that were examined in
this study. The combination of the 15 genome-wide significant
loci accounts for ~3% of the phenotypic variance, indicating that
there are further loci contributing to the disease susceptibility that
remain undiscovered. Fine-mapping and eQTL colocalisation of
the identified association signals have enabled the implication of
genes including WNT10A, LGR6, TP63 and LAMC2 that have
established roles in controlling the development, morphology and
activity of hair follicles. The identification of this series of putative

causal genes provides the basis for an appealing hypothesis that
genetic susceptibility to acne results, in part, from variation in the
structure and maintenance of the pilosebaceous unit that creates a
follicular environment prone to bacterial colonisation and
resulting inflammation. This insight highlights processes that
contribute to hair follicle development and maintenance as
potential therapeutic targets to complement current therapeutic
regimes that focus on suppression of inflammation and bacterial
colonisation.

Methods
Clinical resource. The study was designed in accordance with the Declarations of
Helsinki, and ethical approval was obtained from the NRES Committee London-
Westminster (reference CLRN 05/Q0702/114). Individuals with severe acne were
recruited through a network of 45 dermatology centres in the UK. Each participant
provided signed consent and a clinical assessment was undertaken by a trained
dermatologist. The diagnostic criteria were the same as previously employed in
Navarini et al.3, with one or more of the following criteria required for diagnosis:
(a) nodulocystic disease; (b) ≥5 points in any body region assessed by the validated
Leeds clinical acne score that uses a colour photographic acne grading scheme to
evaluate the severity of involvement of body regions (face 0–12, chest 0–8 and back
0–8);23 (c) requiring treatment with isotretinoin; and (d) presence of rare and
severe forms of acne.

Genotyping and quality control. Genome wide genotyping of the case cohort was
undertaken in two batches using the Illumina Human Omni Express Exome 8v1.2
(2567 cases) and Illumina Infimium Omni Express Exome 8v1.3 (1961 cases).
Genotype calling was performed using the Genome Studio Software package
(Illumina). Control genotypes were obtained from the English Longitudinal Study
of Aging (ELSA, genotyped on the Illumina Human Omni 2.5) and the Under-
standing Society Project (USP, genotyped on the Illumina Human Core Exome
v12.0). Both control cohorts are unselected population control cohorts. Quality
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control was performed in two batches, one containing genotypes from 2567 cases
and 7452 controls from the ELSA and the second with 1961 cases and 9500
controls from the USP.

Variants were excluded if they were only genotyped in either cases or controls
within each batch, had a call rate <0.99 or a significant difference in call rate
between cases and controls (P < 5 × 10−7), or deviated from Hardy–Weinberg
equilibrium (P < 1 × 10−4). Individuals with a call rate < 0.99 or heterozygosity
estimates that deviate more than five standard deviations from the mean were
excluded. Ancestry outliers were detected with principal component analysis
(KING v1.4) and excluded from downstream analysis24. Genetic relatedness
between individuals within the combined cohort and the cohort reported by
Navarini et al.3 was estimated and all but one individual from groups of related
individuals (kinship coefficient > 0.0442, estimated > third degree relatives) were
excluded24. Following quality control batch 1 comprised 358,871 successfully
genotyped variants in 1996 cases and 6978 controls and batch 2 comprised
229,556 successfully genotyped variants in 1827 cases and 9166 controls.

Imputation. Phasing and imputation of the two study batches were undertaken
using the Haplotype Reference Consortium (HRC version r1.1) reference panel on
the Michigan Imputation Server25. Post imputation, variants with info score < 0.7
or a minor allele frequency (MAF) of < 0.005 in either study batch were excluded
from downstream analysis, resulting in a combined total of 7,877,859 variants
successfully genotyped or imputed in a combined total of 3823 cases and 16,144
controls.

Association analysis. Association testing was performed with a logistic Wald
association test (EPACTS), including the first four principal components and QC/
imputation batch as covariates.

Meta-analysis. Results from the association analysis were included in a standard
error-weighted meta-analysis with GWAS summary statistics from a previous
study of 1779 acne cases and 4976 controls in the UK population (Navarini et al.3),
performed with METAL (release 2011-03-25)26. Variants with evidence of het-
erogeneity between the two studies (P-het < 0.05) or with a MAF < 0.005 were
excluded from further analysis, resulting in a total of 7,441,713 variants utilised in
downstream studies.

LD score regression. Linkage disequilibrium score regression was performed
using LDSC v1.0.0 software using summary statistics on variants that had been
directly genotyped or imputed with INFO > 0.9527. LD score regression was also
used to estimate the genetic correlation between severe acne and 175 different
phenotypes for which GWAS have been performed in European populations. This
analysis was performed through the Ldhub interface (http://ldsc.broadinstitute.org/
ldhub/)28,29.

Chromosome 8 inversion genotyping. The orientation of the 3.8 Mb segment on
chromosome 8 was inferred using a total of 736 variants that lie within the
boundaries of the inversion. The posterior probability of each the three possible
inversion genotypes (N/N, N/I and I/I; N = not inverted, I = inverted) for each
individual was calculated from the first principal component calculated across these
736 variants (KING24) using a Gaussian mixture model fitted with an EM algo-
rithm (R package mixtools30).

Transcription factor motif analysis. To evaluate the effect of the single variant
substitution on TP63-binding capacity, the sum occupancy score31 for both alleles
was calculated with PWMtools32 from the TP63 nucleotide position weight matrix
(PWM) from the JASPAR database33.

Locus definition. An LD window was calculated for every variant with a meta-
analysis P value of < 5 × 10-8, defined by the most proximal and distal variants with
an r2 of > 0.5. LD was calculated in the GBR and CEU samples from the 1000
Genomes Phase 334. Regions were combined if there was < 500 Kb between
neighbouring LD-defined regions. The variant with the strongest evidence of
association was considered the lead variant for each locus.

Conditional analysis. Stepwise conditional analysis was performed at each asso-
ciated locus (EPACTS). The genotypes of the variant with the strongest evidence of
association were sequentially included as covariates in iterated logistic regression
models. This process was performed at each locus in the newly generated dataset
and Navarini et al. dataset and combined through a standard error-weighted meta-
analysis (METAL). At each locus this process was repeated until there were no
remaining variants that had evidence of association (meta-analysis P < 5 × 10−5).

Fine-mapping. An approximate Bayes factor was calculated from the effect size
and standard error of each variant in each associated locus, using the approach
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on the log odds ratios of 0.04. The resulting Bayes factors were then rescaled to
reflect the posterior probability for each variant being causal and 95% credible sets
were defined as the minimal set of variants whose combined posterior probabilities
sum to ≥0.95.

eQTL colocalisation. Estimation of the colocalisation between acne association
signals and skin cis-eQTLs from the MuTHER Study36 and GTEx37 was per-
formed. Candidate skin eQTLs were defined as any variant located within an acne
risk locus that was also associated with variation in the expression of a nearby gene
(±1 Mb, P < 1 × 10−4). A Bayesian test for colocalisation between the acne asso-
ciation signal and the skin eQTL signal was performed using a set of variants that
overlapped between the two studies using the R package coloc38, with a prior
probability of colocalisation defined as P: 10−5. In the MuTHER dataset, if multiple
eQTL signals for the same gene had been generated using different gene expression
assay probes, then the test for colocalisation was performed with each probe
association signal separately.

Biological pathway analysis. DEPICT was used to undertake gene prioritisation
for regions of genome-wide significance and to investigate over-representation of
genes within biological pathways39. This method uses prior information to quantify
evidence for membership of genes in predefined gene-sets including molecular
pathways, tissue-specific expression gene-sets and gene-sets relating to specific
biological processes. As recommended39, two separate analyses were conducted, for
loci with P < 1 × 10−5 and P < 5 × 10−8. 5000 permutations were conducted to
adjust the enrichment P values for biases and a further 500 permutations to define
the false discovery rate.

Data availability
Full meta-analysis summary statistics are available at the European Genome-
phenome Archive under the collection ID EGAS00001003278.
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