Table 2 Estimated parameters for the best fitting sero-catalytic models to each of the 9 data sets
From: The utility of serology for elimination surveillance of trachoma
Study site | Model | λ T | γ | p | t c | λ UG | DIC |
---|---|---|---|---|---|---|---|
Nepal (Pgp3) | Scenario 2v1 | 0.143 (0.107–0.215) | 0.053 (0.031–0.084) | 0.026 (0.020–0.032) | 16.06 (13.57–17.69) | — | 1325.11 |
Nepal (CT694) | Scenario 2v1 | 0.142 (0.103–0.207) | 0.062 (0.037–0.097) | 0.017 (0.013–0.021) | 16.84 (14.93–18.65) | — | 1252.95 |
Gambia LRR | Scenario 3v4 | 0.021 (0.013–0.03) | 0.677 (0.268–0.984) | — | — | 0.067 (0.049–0.090) | 866.64 |
Gambia URR | Scenario 3v4 | 0.023 (0.010–0.184) | 0.591 (0.112–0.893) | — | — | 0.063 (0.015–0.595) | 678.64 |
Rombo (Pgp3) | Scenario 3v4 | 0.022 (0.009–0.041) | 0.177 (0.019–0.881) | — | — | 0.092 (0.061–0.127) | 379.74 |
Rombo (CT694) | Scenario 3v4 | 0.008 (0.004–0.016) | 0.172 (0.002–0.567) | — | — | 0.048 (0.031–0.062) | 326.74 |
Temotu | Scenario 3v4 | 0.045 (0.028–0.075) | 0.585 (0.218–0.986) | — | — | 0.021 (0.001–0.041) | 1440.54 |
Rennell & Bellona | Scenario 3v4 | 0.092 (0.061–0.170) | 0.746 (0.319–0.995) | — | — | 0.255 (0.085–0.499) | 247.34 |
Kiribati | Scenario 3v3 | 1.080 (0.345–1.737) | 0.063 (0.034–0.204) | — | — | — | 453.45 |
iTaukei | Scenario 1v2 | 0.053 (0.044–0.063) | — | — | — | — | 554.99 |
Indo-Fijian | Scenario 1v2 | 0.006 (0.001–0.014) | — | — | — | — | 23.30 |