Table 1 Properties of predictive models for six tools
From: Biological relevance of computationally predicted pathogenicity of noncoding variants
Method | Assumption of pathogenicity | Predictors | Modeling approaches | Performance (AUROC)a |
---|---|---|---|---|
CADD | Evolutionary fitness | Evolutionary parameters, ENCODE summaries, functional annotations, population frequencies | Support vector machines | 0.92b |
CATO | Molecular functions | Cell type- and tissue-specific assays, evolutionary parameters, functional annotations | Logistic regression | NAc |
DeepSEA | Molecular functions | Local sequences, evolutionary parameters | Deep learning, Logistic regression | 0.85 |
EIGEN | Noned | Evolutionary parameters, ENCODE summaries, population frequencies | Unsupervised learning | 0.79 |
GWAVA | DAVs vs. CPPs | Evolutionary parameters, ENCODE summaries, population frequencies | Random forests | 0.97 |
LINSIGHT | Evolutionary fitness | Evolutionary parameters, ENCODE summaries, functional annotations | Generalized linear model | 0.96 |