Fig. 5 | Nature Communications

Fig. 5

From: High capacity silicon anodes enabled by MXene viscous aqueous ink

Fig. 5

Electrochemical characterization of Gr-Si/MXene anodes and comparison to literature. a Typical galvanostatic charge-discharge (GCD) curves of Gr-Si/MX-C electrode (MX-C Mf = 30 wt%, MGrSi/A = 3.3 mg cm−2) at various current densities. b Left: GCD profiles of Gr-Si/MX-C electrodes with various M/A at 0.1 A g−1 (~1/20 C-rate). Right: first CE (up) and C/A (down) of Gr-Si/MX-C plotted as a function of MGr-Si/A. c Cycling performance of Gr-Si/MX-C electrodes with various MGrSi/A at 0.2 A g−1 (~1/10 C-rate). d, e Scanning electron microscopy images of the Gr-Si/MX-C electrode (MGrSi/A = 3.3 mg cm−2) after cycling, showing that the MX-C binder tightly wrapped the Gr-Si particles and maintained the structural integrity (scale bar for d and e = 2 µm). f Areal capacity comparison of this work to other Si/conductive-binder (Si/C-binder) systems, showing that our Si/MX-C electrodes have exhibited both high MActive/A and C/A compared to the literature. g Scheme of components inside the cell, highlighting the importance of utilizing high MActive/A electrodes in reducing the contribution from the inactive components. h Cell-level specific capacity (C/MTotal) on the anode side plotted as a function of MActive/A, and compared to the reported Si/C-binder systems. Dashed lines indicate the theoretical performance for the nSi (blue line) and Gr-Si (red line) particles

Back to article page