Fig. 3 | Nature Communications

Fig. 3

From: Direct electronetting of high-performance membranes based on self-assembled 2D nanoarchitectured networks

Fig. 3

Superior properties of various self-assembled nano-nets. a Typical scanning electron microscopy (SEM) images of polyvinyl alcohol (PVA), polyamide-6 (PA-6), polyacrylonitrile (PAN), poly(m-phenylene isophthalamide) (PMIA), TiO2 and carbon self-assembled nano-nets. Scale bars in (a), 300 nm. b Fiber diameter, c Brunauer–Emmett–Teller (BET) surface area and d pore size of the various nano-nets in (a). Base weight of the membranes used in (d), ~0.05 g m−2. e Microtensile-strain curve of polyvinylidene fluoride (PVDF) self-assembled nano-nets. The inset image in (e) shows a micromechanical tensile tester for a single nanofiber. f SEM images of PVDF nano-nets at different tensile elongations (ε) during a continuous stretching process. Scale bars in (f), 300 nm. g Schematic description of the evaluation of the self-assembled nano-nets under continuous tensile deformation. h Photographs of dynamic measurements of water adhesion (top) and water permeation (bottom) on the surface of PVDF and PAN nano-nets, respectively. i Snapshot images of ultrathin free-standing PVDF self-assembled nano-nets at different transparencies. j Transparency values of PVDF nano-nets with different base weights. The inset in (j), the corresponding transmittance-thickness curve. Dotted line in (j), 95% transmittance. Error bars in (b–d, j) represent s.d.

Back to article page