Fig. 5

Deficient cell rearrangements in Wnt5a−/− mutants. a The Wnt5a−/− mutant mandibular arch is comparatively short and broad by OPT. b A finite element model incorporating the spatial variation of Wnt5a−/− mutant cell cycle time, Young’s modulus and viscosity was employed to simulate 4 h of growth starting from the actual 19 somite stage Wnt5a−/− mutant mandibular arch shape compared to the actual 21 somite stage Wnt5a−/− mutant arch. c Ratio of rostrocaudal to proximodistal axis length (RC/PD) was comparatively better for finite element simulation of Wnt5a−/− mutant growth than for WT. d, e Cells of H2B-GFP transgenic embryos were tracked by 4D light sheet microscopy and, according to a random walk model, persistence of cell movements (persistent time (d)) and direction (angle from the mean (e)) were diminished in Wnt5a−/− mutants. CDF, cumulative distribution function. f Epithelial T1 transitions in the Wnt5a−/− mutant mandibular arch did not tend to converge and extend the middle region as in WT (compare with Fig. 3b). g Angular change in long axis among resolving tetrads was diminished in Wnt5a−/− mutant epithelium (n = lateral arch epithelium in each of 2–5 embryos per condition, asterisks indicate p < 0.05, Student’s t-test). h Distribution of mesenchymal cell face numbers was shifted rightward to higher values for Wnt5a−/− mutant mesenchyme (n = 2 Wnt5a−/− embryos, 92 middle cells, 146 distal cells, error bars denote s.e.m.). i Mesenchymal cells in the mutant middle region lacked the centripetal intercalary movements and longitudinal tissue flow as observed in the WT middle region (compare with Fig. 2f, g). Source data are provided as a Source Data file