Fig. 1
From: A stochastic view on surface inhomogeneity of nanoparticles

Creating a model for dSTORM-mediated analysis of functional group distribution. a Schematic depiction of the steps involved in the observation of fluorophore patterns on a spherical nanoparticle. Fluorescent dyes (red spheres) are, either chemically or physically, grafted to the nanoparticle (grey sphere) according to an unknown spatial distribution. The collection of localizations (red crosses) acquired during subsequent dSTORM imaging does not yield this spatial distribution exactly, due to a finite localization accuracy (I) and blinking of the dyes (II), leading to overcounting artefacts (III). b In our model, the steps mentioned in a can be mimicked in a fully controlled computational environment. The nanoparticle is functionalized with fluorescent emitters (red spheres) following an arbitrary spatial distribution. Subsequently, the dSTORM imaging process is simulated, leading to a collection of localizations (red crosses) with known sources. From these localizations, the positions of the emitters are estimated (blue pyramids). By comparing emitter locations and the corresponding estimates, the performance of the estimation procedure is assessed