Fig. 1 | Nature Communications

Fig. 1

From: Nuclei multiplexing with barcoded antibodies for single-nucleus genomics

Fig. 1

Nuclei multiplexing using DNA-barcoded antibodies targeting the nuclear pore complex. a Experimental workflow. Nuclei are isolated from frozen tissues and stained with DNA-barcoded antibodies targeting the nuclear pore complex (MAb414, Biolegend). The DNA barcode encodes a unique sequence representing each tissue sample, enabling sequence-based identification of each nucleus after pooling and profiling the different samples. b–e Hashed and non-hashed samples of the human cortex from eight postmortem donors yield comparable results. b t-stochastic neighborhood embedding (tSNE) of single-nucleus profiles (dots) colored by cell type. c tSNE as in b colored by type of protocol. Non-hashed control sample (blue) and hashed sample (orange) show similar patterns. d Cell-type frequencies observed for hashed (orange) and non-hashed control (blue) samples. The adjusted mutual information (AMI) is shown at the top left. e Distributions of the number of expressed genes (y- axis, left) in each cell type (x-axis) in b, for nuclei from hashed (orange) and non-hashed control (blue) samples. f, g Hashed single nuclei from all donors are similarly represented across cell-type clusters. f tSNE as in b colored by donor. g Observed frequencies (y-axis) of each cell type (x-axis) per donor (color). The adjusted mutual information (AMI) is shown at the top left. Please follow the Supplementary Note in the Supplementary Information to reproduce this figure. Availability of source data is indicated in the Data Availability statement

Back to article page