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Field and lab experimental demonstration of
nonlinear impairment compensation using
neural networks
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Fiber nonlinearity is one of the major limitations to the achievable capacity in long distance
fiber optic transmission systems. Nonlinear impairments are determined by the signal pattern
and the transmission system parameters. Deterministic algorithms based on approximating
the nonlinear Schrodinger equation through digital back propagation, or a single step
approach based on perturbation methods have been demonstrated, however, their imple-
mentation demands excessive signal processing resources, and accurate knowledge of the
transmission system. A completely different approach uses machine learning algorithms to
learn from the received data itself to figure out the nonlinear impairment. In this work, a
single-step, system agnostic nonlinearity compensation algorithm based on a neural network
is proposed to pre-distort symbols at transmitter side to demonstrate ~0.6 dB Q improve-
ment after 2800 km standard single-mode fiber transmission using 32 Gbaud signal. Without
prior knowledge of the transmission system, the neural network tensor weights are con-
structed from training data thanks to the intra-channel cross-phase modulation and intra-
channel four-wave mixing triplets used as input features.
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apacity of optical transmission systems are bound by
fundamental limits in both linear and nonlinear regime!.

Recent experiments demonstrated capacities approaching
the Shannon limit in the linear regime2-%. This leaves the Kerr
nonlinearity as one of the major limitations to increasing capacity
per fiber. Nonlinear compensation (NLC) algorithms were
introduced in digital coherent receivers to compensate
for the pattern-dependent and deterministic Kerr nonlinearity>®.
These digital signal processing (DSP) NLC algorithms were based
on solving the nonlinear Schrodinger equation (NLSE) which
governs the propagation of optical field in the fiber” in multiple
steps such as digital back propagation (DBP)>°. A variety of
techniques were developed to reduce the complexity of NLC for a
given amount of improvement, some of which reduced the
required complexity by orders of magnitude such as the filtered
DBP8. Compared to full-step DBP, at least 0.2 steps per span
(SpS) and 0.6 SpS are found to be sufficient for QPSK® and
16QAM?, respectively. The first-order linear perturbation of
NLSE has led to the single-step perturbation-based pre/post-
distortion (PPD) algorithm for Gaussian!? and root-raised cosine
(RRC) pulses!!-13, PPD was demonstrated over transoceanic
distances to achieve only slightly less NLC gain than filtered DBP
at 0.5 SpS12. Furthermore, after the initial success of filtered DBP
and PPD in reducing the complexity, further reduction of com-
plexity proved difficult to achieve. The common thread among
these algorithms was that they were based on equalizing the
nonlinearity based on a deterministic model of the impairment.

Recently, a different approach was taken using machine
learning algorithms!4-17. These algorithms aim to equalize non-
linear impairments directly by learning from data, rather than
through emulating NLSE. These attempts remained limited in
success in particular for dispersion-uncompensated links, or in
scope until it was demonstrated recently through a field trial on a
live-traffic cable that a simple neural network (NN) can provide
NLC if it was supplemented with nonlinear impairment fea-
tures!8. A second approach!® showed through simulations that,
NN can also be used to obtain NLC by treating the DBP steps as
NN layers. However, by design, this approach requires operating
on at least two samples per symbol, which induces additional
complexity.

In this paper it is shown that the NN architecture demon-
strated in ref. 18 can be simplified further so that it can achieve
NLC gain at a complexity lower than filtered DBP algorithms that
are based on solving NLSE, especially at the most critical regime
where the available DSP resources become scarce. Furthermore,
NN not only learns from the received data and generates a black-
box model of the transmission, it also can guide us how to reduce
the complexity through the weights by distinguishing the terms
that contribute significantly from the ones that do not. Another
advantage of the proposed algorithm is that since it relies only on
received data to emulate the transmission model, it works without
prior knowledge of the link parameters. Since the algorithm
becomes free from specifics of the link design, it can be applied
universally to all fiber optical communication links whether they
are short-haul, long-haul, terrestrial, submarine, or whether they
are legacy systems or the state-of the art. It is also shown that the
algorithm is versatile and robust enough that while the training
can be performed at the receiver side which is the most practical
case, the equalization can be performed on the transmitter side.
NLC at the transmitter has the benefit of achieving slightly better
Q improvement, but more importantly the possibility of a further
reduction of complexity by calculating nonlinearity features
with look up tables (LUT) rather than real multiplications. Per-
formance of the proposed universal NN-NLC algorithm is
demonstrated in both lab experiment over 2800 km standard
single-mode fiber (SSMF) loop and field trial over 11,017 km

straight-line FASTER cable. Compared with single-step filtered
DBP algorithm, NN-NLC algorithm is capable of achieving ~0.35
dB Q-factor improvement in the 2800 km SSMF transmission and
attaining ~0.08 b/s/Hz higher generalized mutual information
(GMI) after 11,017 km submarine distance. The results show that
NN-NLC has more potential to outperform filtered-DBP espe-
cially in the regime where the degree of computational complexity
is limited.

Results

Input features. Even though the NN algorithm needs only data to
achieve a working model of the nonlinear impairment, it was
found that providing the NN with nonlinear impairment features
was necessary!8. These features are provided to the NN by first
calculating the intra-channel cross-phase modulation (IXPM)
and intra-channel four-wave mixing (IFWM) triplets from the
received symbols!®20, The triplets originated from the first-order
perturbation of the NLSE that describes the evolution of the
optical field as follows”:
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where u,,(t, z) is the optical field of x and y polarization,
respectively, 5, is the group velocity dispersion, and y is the
nonlinear coefficient. In the first-order perturbation theory, the
solution to Eq. (1) consists of both linear u,,/,(t,z) and nonlinear
perturbation Auy,(f, z) terms!®2!. Assuming much larger accu-
mulated dispersion than symbol duration, the nonlinear pertur-
bation terms for the symbol at t =0 can be approximated as?2

Aux/y(()? Z) = Z Pg/z (HnH:n+nHm+Vn V;:H—nHm) Cm,n’ (2)

where Py, H,, and V,, and C,,, are, respectively, the launch
power, symbol sequences for the x- and y-polarization, and
nonlinear perturbation coefficients, m and n are symbol indices
with respect to the symbol of interest Hy and V,. The triplet is
defined as T=H,H, H, +V,V, H,  in this paper. The
nonlinear perturbation coefficients C,,, can be analytically
computed given the link parameters and signal pulse duration/
shaping factors!0, whereas the triplets do not depend on the link
and can be calculated directly from the received symbols.

The proposed NN-NLC algorithm is divided into two stages:
training and execution stages. In the training stage, the NN learns
from the training data and generates a black-box model of the
transmission link. In the execution stage, the nonlinear impair-
ment is calculated based on the model, and the impairment is
removed from the data.

Training stage. During the training stage it is necessary to have
sufficient nonlinearity therefore the launch power P, should be
close to, or larger than the optimum channel power. One draw-
back of data-driven modeling is that the received data is cor-
rupted not only by nonlinear impairments but also by amplified
spontaneous emission (ASE) noise. This can be easily taken care
of by transmitting the same training data repeatedly and aver-
aging out the pattern-independent noise such as ASE, and inter-
channel nonlinearities, while the intra-channel nonlinear
impairments can be retained. NN-NLC operates on the soft data
output from carrier phase recovery block shown in DSP flowchart
of Fig. la. At the training stage NN-NLC needs to be imple-
mented at the receiver side whereas the execution stage can be
implemented at either the transmitter or receiver side, see Fig. 1.
As the training does not have to operate at the data rate unlike the
execution stage, and the amount of training data is not excessive,
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Fig. 2 System setup of the transmitter and transmission loop. DAC: digital-
to-analog converter, ECL: external cavity laser, GEQ: gain equalizer, PS:
polarization scrambler

it can be performed offline to save computation cost. To test the
NN-NLC algorithm with experimental data, single-channel 32
Gbaud dual-polarization (DP)-16QAM with RRC 0.01 pulse
shaping as shown in Fig. 2 is generated using 64 Gsa/s DAC and
transmitted over a recirculating loop testbed consisting of five
spans of 80km SSMF with 0.2dB/km loss and 17 ps/nm/km
dispersion. A digital coherent receiver running at 50-GSa/s with
analog bandwidth of 20 GHz downsamples the optical waveforms
for offline DSP outlined in Fig. la to recover the transmitted
symbols. In addition, 50% chromatic dispersion compensation
(CDCQ) is applied at the transmitter to reduce the interaction
length between symbols!3. Three uncorrelated datasets each with
~115k symbols are generated for training, cross-validation (CV)
and testing. The data pattern used in the training, CV and test
datasets is measured to have maximum 0.6% normalized cross-
correlation to ensure data independence.

As the training pattern is fixed at the transmitter side and the
ASE noise is an independent additive Gaussian noise, the
recovered symbols can be easily synchronized using a framer in
practice to align the symbols in the same order such that the ASE
noise can be reduced after averaging, while keeping the nonlinear
interaction intact. Multiple waveform acquisition is processed,
and the recovered soft symbols after carrier phase recovery are
aligned to average out the additive noise. Figure 3 plots the
impact of the number of acquired waveforms on the Q-factor and
constellation of the training dataset received at ~2dB higher
channel power than the optimum after 2800 km transmission.
About 1.6 dB Q-factor improvement is observed after averaging
over just 5 acquired waveforms. The saturation curves show that

the resulting cleaner constellation in Fig. 3c is able to more
accurately represent the nonlinear noise than the one in Fig. 3b.

Parameter optimization of ML model. There are various ML
models from simple linear regression to sophisticated deep-
learning models used for solving a variety of problems. Fully
connected neuron network is selected to demonstrate the effec-
tiveness of NN for NLC at a similar or even lower complexity
than existing DSP algorithm. The optimized feed-forward NN
model shown in Fig. 4 is constructed from an input layer with 2N,
triplets nodes, 2 hidden layers consisting of 2 and 10 nodes,
respectively, and two output nodes corresponding to the real and
imaginary parts of the estimated nonlinearity. The optimization
of the number of hidden layers and the number of nodes in each
layer is carried out to simplify the complexity of the NN archi-
tecture without degrading the BER performance of the derived
models on the CV datasets. Note that the triplets are separated
into real and imaginary parts before being fed into the NN model.
Although Eq. (2) describes linear relationships among these
IFWM/IXPM triplets due to the first-order perturbation, non-
linear activation function in the neuron nodes is found in our
study to achieve better performance than linear function. The
impact of activation function is explained in the next section. A
dropout layer with probability of 0.5 is placed after the 2nd
hidden layer during training only to avoid overfitting. Applying
Adam learning algorithm?> with a learning rate of 0.001 and
batch size of B=100, the network is trained by transmitting
known but randomly generated patterns, and searching for the
best node tensor parameters that minimize the mean square error
(MSE) between the transmitted and received symbols after NN-
NLC, i.e.,

1< .
MSE= 2> |H, — (H,~ F ). (3)
i=1

where H; and I:I,}NL, respectively, are the received symbols and
estimated nonlinearity for pol-x. Although the model is trained
for x-polarization data, same weights can be used to obtain a
similar performance improvement for the y-polarization data too.
Note that the training can be done at much slower pace than data
rate to allow deep-learning algorithm to locate the appropriate
NN models and compute the optimum tensor weights prior to the
execution stage.

The impact of activation function. A single-channel 32Gbaud
DP-16QAM is simulated over 40x80km SSMF with 50%
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Fig. 3 Denoising. a The impact of de-noising by averaging over the training datasets on the Q-factor at SNR =18.4 dB after 2800 km. b Received
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Fig. 4 The block diagram of the proposed NN-NLC. Illustrated for pol-x
only. The diagram in the dashed box describes the optimized NN
architecture with two hidden layers used in the paper

pre-CDC to compare the performance of four different activation
functions plotted in Fig. 5a, namely SELU, ReLU, Leaky ReLU, and
linear, on both CV and test datasets with N, = 2065 triplets. Note
that linear function represents just the linear regression. As shown
in Fig. 5b, the training process converges faster when applying
nonlinear activation function as they help alleviating the vanishing
gradients problems?3. In addition, it is found that the Leaky ReLU
activation function is the optimum among these four varieties. As
shown in Fig. 5b, the linear combination of these triplets shown in
the linear regression curve is not as good as the cases with non-
linear activation using SELU and Leaky ReLU. It may be caused by
the nonlinear interaction between these triplets in these nonlinear
activation functions to account for even higher-order non-
linearities, such as 6th-order interaction between symbols. These
observations are verified in simulation shown in Fig. 5¢ to further
demonstrate the advantage using Leaky ReLU activation function
as the gap between the linear regression and RELU grows at higher
powers. Based on the study results, Leaky ReLU is used in our
experiments to maximize the NLC gain.

To exclude the impact of the uncertainties of the experimental
setup on the performance, simulation results are used to compare

the NLC performance between PPD and NN-NLC algorithm as a
function of the number of triplets. The calculation of perturbation
coefficients are based on ref. 13. The Q improvement over the
CDC is plotted in Fig. 5d as a function of the number of triplets at
the optimum channel power of 1 dBm. The NN-NLC with Leaky-
ReLU outperforms PPD by ~0.15dB at ~2000 triplets thanks to
the nonlinear activation function in the neuron nodes.

Triplets selection. After cleaning up the ASE noises in the
received training dataset, IXPM & IFWM triplets are calculated
according to Eq. (2). In systems with large dispersion, symbols can
overlap and interact with thousands of neighboring symbols. In
order to keep the complexity low, the number of triplets should be
kept low by only including the ones that contribute the most. This
requires establishing a selection criterion!%13, In previous work!8,
nonlinear perturbation coefficients C,,,, were used as a way to
estimate which triplets contributed the most. Only the triplets that
satisfied the criterion C,,, >k was retained where x was a free
parameter to adjust the trade off between complexity and per-
formance. Even though C,,,, were not used in the execution stage,
their computation during the training stage still required accurate
link and transmission system parameters!'®. Considering that the
C,.,» has a hyperbolic dependence on m and n, we propose to
choose all the triplets with index pairs m, and » that satisfies the
following criterion that is independent of link parameters

L)

where min{-} takes the minimum of its arguments, [-] stands for
the ceiling function, L determines the largest value of m, and n,
and p controls the maximum of the m, n product. The values
required for L and p are not too restrictive as long as a sufficiently
large number of triplets are chosen to initialize the training.
Through iterative trimming during the training stage, as discussed
below, the excess triplets can be removed before the execution
stage.

Execution stage. During the training stage, the performance of
the model is checked against the CV dataset only to optimize the
NN model parameters. Afterwards the learned model is applied to
the uncorrelated test dataset for all channel powers in the
execution stage. The block diagram of the proposed NN-NLC is
shown in Fig. 4. Given the symbol of interest H, centered at the
middle of pattern length L, the IXPM and IFWM terms are
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Fig. 6 Density plots. The density plot of the input layer weights of the NN model at a initial Ny =1929 and b N; = 615 triplets after iterative trimming

(k= —22dB). Colorbar shows the magnitude of the weights

calculated and fed into the NN model described in the dashed box
of Fig. 4 to estimate the nonlinearity. The estimated H, y; is then
scaled by the channel power (Py,) of the test dataset with respect
to the reference channel power (P, of the training data used for
deriving the model, i.e.,

o = 1001% (Pch*P;ef). (5)

The estimated F, y; is subtracted from the original symbol of

interest before being sent to next DSP block, for instance, the FEC
decoding in Fig. la.

Complexity. Since the complexity of real multiplications could be
four times as much as addition operation?*, only real multi-
plication is taken into account when comparing the complexity of
the NLC algorithm. The NN model shown in the dashed box of

Fig. 4 requires 2N, x2+2x 10+ 10 x 2 =4N,+ 40 real multi-
plications because of three cross-layer tensor interaction. Note
that the activation function Leaky ReLU() in the hidden nodes
and IXPM/IFWM triplets computation are assumed to be
implemented in LUT. After scaling the estimated nonlinearity
term, the number of real multiplication per symbol for the pro-
posed NN-NLC shown in Fig. 4 can be summarized as

4N, + 42. (6)

Therefore, reducing the number of triplets N, is the most effective
way to lower the complexity of the NN-NLC algorithm in
our model.

As shown in Fig. 6a, with the initial N, = 1929 triplets, some of
the input tensor weights W, ,, in the trained model show much
smaller contribution to the signal nonlinearity than the center
ones. As a result, the number of triplets N; can be further reduced
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by only keeping those weights larger than a specified threshold «,
ie, Wy, > k. After trimming off the weights W,,,, that are less
than ¥ = —22 dB, the remaining 615 triplets are re-trained in the
NN model and the new density plot of the input tensor weights
W,.n is shown in Fig. 6b. Figure 7 plots the impact of the
trimming threshold x on the performance improvement of the
NN-NLC as a function of received SNR after 2800 km transmis-
sion. At the optimum received SNR, the NN-NLC algorithm at
trimming threshold x < —15 dB achieves >0.5 dB Q improvement
over CDC. Larger Q improvement at the highest received SNR
further confirms the NN model is able to accurately predict the

Q-factor (dB)

12 13 14 15 16 17 18
Rec. SNR (dB)

Fig. 7 Trimming threshold. The impact of trimming threshold x on the NN-
NLC with Leaky RelLU at the receiver side after 2800 km transmission

signal nonlinearity. At the optimum received SNR, Q value
improvement is adjusted from 0.2 to 0.4dB by varying the
complexity through adjusting « from —35 to —15 dB, as shown in
Fig. 7. Training the NN is more practical at the receiver side,
however, computation of triplets at the receiver side requires the
use of soft symbols. To reduce complexity further, it is better to
execute the NN-NLC block at the transmitter side and use a LUT
to store the triplet values rather than calculate them online. The
LUT size could scale as large as M> where M is the constellation
size. Figure 1b shows the DSP block diagram of the NN-NLC at
the transmitter side. Figure 8a shows the constellation generated
after applying pre-distortion calculated by the NN at the
transmitter side with « set to —22 dB.

Performance of the transmitter side compensation is compared
with the receiver side compensation in Fig. 9a. Even though the
NN is trained at the receiver side, the transmitter side
compensation performs better in all the ranges but especially at
the high complexity end. This improvement is expected
considering that at the transmitter side the NN model works
on the clean transmitted symbols. Moreover, once the non-
linearity is mitigated at the transmitter, the receiver DSP
algorithm works on the signals with reduced nonlinearity and
cycle slip rate?®. Tx-side NN-NLC outperforms PPD by more
than 0.4 dB, which is attributed to the learning features and
nonlinear Leaky ReLU() activation functions. Compared to the
recovered constellation without NN-NLC algorithm shown in
Fig. 8¢, the transmitter-side NN-NLC can significantly improve
the constellation quality as plotted in Fig. 8b.

One of the most important criteria for a practical NLC
algorithm is its low complexity while providing a significant Q

e
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Fig. 8 Constellations. a Pre-distorted symbols at transmitter side; recovered constellation at the receiver b with and ¢ without Tx-side NN-NLC. Received

SNR =18.4 dB after 2800 km transmission
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improvement. Complexity of the NN-NLC was compared with
NLC algorithms based on perturbation approach whose complex-
ity also scales with the number of triplets!8. To establish the
performance of the NN-NLC with respect to existing NLC
algorithms in terms of the performance-complexity trade off, the
comparison is extended to the filtered-DBP technique. Filtered-
DBP is chosen for comparison because it is a well-established,
low-complexity®® technique where the complexity versus
improvement trade-off can be easily adjusted and it provides
gain as long as it has sufficient number of steps. In filtered-DBP,
the number of steps can be reduced by filtering the intensity
waveforms by a low-pass filter (LPF) at the nonlinear phase
rotation stage. The optimal bandwidth for the Gaussian-shaped
LPF is found to be 5, 1, 1, and 0.5 GHz for 1, 5, 7, and 35 spans
per step (SpS). The optimum scaling factor & used to de-rotate the
signal’s phase is ~0.7 for all cases. The Q performance
improvement over CDC is plotted in Fig. 9b to show that Tx-
side NN-NLC is capable of matching the performance of the
filtered-DBP even at higher complexity than 2000 real multi-
plications per symbol while still keeping the performance
advantage at lower complexity over filtered-DBP. More impor-
tantly, NN-NLC performs significantly better at the lowest
complexity end. The complexity of filtered-DBP is calculated
based on Eq. (9) in ref. ° by assuming FFT size of 4086. The
performance of NN-NLC is further tested on an 11,017 km
commercial FASTER submarine cable together with live traffic.
Digital subcarrier modulation (DSM) 4 x 12.25Gbaud capacity-
approaching probabilistic-shaped (PS) 64QAM?2%27 at RRC 0.01
with 50 MHz guard band carrying in total 300 Gb/s bit rate is
used as the probe signal in 50 GHz WDM configuration. The
details of the system setup and optical spectra can be found in!8.
After applying de-noising through averaging over ASE approach,
the received PS-64QAM constellation at 2dB channel pre-
emphasis is shown in Fig. 10a. Note that generalized mutual
information (GMI)?3 is used for accurately measuring the gain of
NN-NLC for PS-64QAM format. Figure 10c compares the
performance of NN-NLC and filtered-DBP with respect to the
CDC only as a function of computation complexity. Note that
the received PS-64QAM soft symbols are first hard-decoded into
64 symbols in order to avoid the multiplication involved in
computing triplets. Once again it is found that NN-NLC performs
better than filtered-DBP when the complexity is less than

~500 real multiplications per symbol. It is expected that Tx-side
NN-NLC is likely to further improve the performance gain.
Figure 10b plots the density map of the input-layer nodes weights
after training with 240 triplets.

Even though NN-NLC lowers the complexity in terms of
required number of multipliers, a comparison of this algorithm
with existing algorithms in term of detailed circuit design is not
studied. Nevertheless, being a feed-forward algorithm, NN-NLC
is highly parallelizable as it would be required for high-speed
transponders. The proposed NN-NLC is experimentally demon-
strated in both lab testbed and field cables to show the system-
agnostic performance without prior knowledge of the transmis-
sion link parameters such as dispersion, fiber nonlinearity, and
fiber length.

Data availability

The datasets generated during the current study are not publicly available due to
restrictions from commercial privilege, but portions of the data are available from the
corresponding author on reasonable request.

Code availability
Example code is included for calculating the triplets, and performing the training and
testing stages at http://www.nec-labs.com/~ons/NICNN/
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