Fig. 2 | Nature Communications

Fig. 2

From: Deciphering key processes controlling rainfall isotopic variability during extreme tropical cyclones

Fig. 2

Satellite evolution of Hurricane Otto. GOES-8 (Geostationary Operational Environmental Satellite) East Thermal IR brightness temperature (IRTB) imagery retrieved from the RAMSDIS (Regional Advanced Meteorological Satellite Demonstration and Interpretation System) website during the event (http://rammb.cira.colostate.edu/ramsdis/online/). The evolution of Hurricane Otto is shown as the organization of convection going from a TD (Tropical Depression) to TS (Tropical Storm) (a) (two convective nuclei are noted by numbers 1 and 2). Well-defined convective clouds (shielded by the green IRTB contours) organized around the low pressure minimum (b) displaying a cyclonic motion as the system intensified to a H1 (black arrows denote dragged moisture transport). Favorable conditions, including warm water (SST > 29 °C) allowed the increase to H3 with a well-defined and nearly steady eye and wall (c). Green contours over northeastern Costa Rica show evidence of convective rainfall as Otto approached land (1605 UTC November 24, 2016) (d). Despite the rapid decline of the hurricane, its pass across the Costa Rica-Nicaragua border was followed by high convective rainfall rates

Back to article page