Fig. 1
From: Scale-invariant magnetic textures in the strongly correlated oxide NdNiO3

Experimental setup and nanoscale antiferromagnetic landscape in NdNiO3. The combined use of a Fresnel zone plate and an order sorting aperture delivers a ~ 100 nm focused soft X-ray spot at the sample. The magnetic Bragg diffraction patterns are visualized with a fast area detector. a Knife edge scan, demonstrating a spot size of around 100 nm at 852.5 eV (Ni-L3 resonance). b The sample was oriented to intercept the antiferromagnetic diffraction peak at QAFM = [¼, ¼, ¼]pc (reciprocal lattice units in pseudocubic notation) arising from ordering within the Ni spin sublattice38,39. c The spatial map of magnetic scattering intensity exposes a highly inhomogeneous electronic landscape at the nanoscale. Arrows indicate the local pseudocubic crystallographic orientation. Each arrow length spans 1 μm in the sample frame of reference. Notice that in this scattering geometry, owing to the sample surface not being normal to the incident X-ray beam, additional geometric factors need to be accounted for when converting lateral beam translation footprint (defined in lab frame) onto the sample surface (sample frame)