Fig. 5
From: Synthetic protein-conductive membrane nanopores built with DNA

Kinetic analysis of protein transport through single DNA nanpores analysed using silicon chips. a Architecture of a transparent silicon-on-insulator (SOI) chip featuring a microcavity closed off by a membrane with  the embedded DNA nanopore NP. The microcavity contains a solution of enhanced green fluorescent protein (EGFP) (27 kDa) and Rhodamine B dextran (70 kDa) at the trans side and is separated by the solid-supported lipid bilayer (SLB) from the buffer reservoir (cis side). EGFP acts as flux analyte, whereas larger Rhodamine B dextran (70 kDa) is a negative control for pore transport and indicates membrane rupture. The microcavity is not drawn to scale. b Exemplary normalised EGFP (green squares) and Rhodamine B dextran (red circles) fluorescence signals implying translocation of folded proteins through a DNA nanopore. The arrow (grey) shows the point of spontaneous membrane insertion of a nanopore. c The statistics of thousands of single translocation traces are classified in nanopore-mediated EGFP effluxes, membrane ruptures, complex kinetics, and inadequate controls as well as cavities without signal changes. The statistics were obtained  for 1 pM NP. d Multiple similar, normalised EGFP efflux traces from different SOI cavities indicate high structural homogeneity among nanopores. e DNA pore-mediated efflux traces were fitted monoexponentially with rate constant kefflux and the values are summarised in the histograms. The distribution of efflux constants was Gaussian fitted to reveal single nanopore efflux constants (keff single) (solid line) and double nanopore efflux constants (kefflux double) (dashed line). The proportion of single nanopore efflux constants was larger for 1 pM DNA nanopore NP compared to 10 pM (inset). The total number of individual traces in the histograms are 1649 and 737, respectively. Source data are provided as a Source Data file