Table 2 Statistics of performance and suggested sequences from NucleicNet and RNAcompete (RNAC)

From: A deep learning framework to predict binding preference of RNA constituents on protein surface

Figure 4

a

b

c

d

e

f

g

h

Gene name

PABPC1

PCBP2

PTBP1

RBFOX1

SNRPA

SRSF2

TARDBP

U2AF2

Sampled PDBID

1cvj

2py9

2adc

2err

1aud

2lec

4bs2

2g4b

RNAC ID

155

44

269

168

71

72

76

79

RNAC suggested sequence

ARAAAAM

CCYYCCH

HYUUUYU

WGCAUGM

WUGCACR

GGAGWD

GAAUGD

UUUUUYC

NucleicNet suggested sequence

AAAAAAW

WHCYCUWHCYCU

UUUWYU

URHAUGU

AWUGCAH

WNGAGW

RURWAUGA

UUDWW

PDB deposited sequence

AAAAAAA

AACCCUAACCCU

CUCUCU

UGCAUGU

AUUGCAC

UGGAGU

GUGAAUGA

UUUUU

Pearson correlation (RNAC PWM Score vs NucleicNet Score)

0.81

0.70

0.73

0.27

0.74

0.32

0.77

0.72

Welch’s t-test statistics (highest 10—lowest 10)

20.7

16

25.3

5.2

6.2

7

1.7

20.2

Welch’s t-test P-value

6.10E-13

1.90E-09

6.70E-13

2.40E-04

4.90E-05

3.90E-06

1.10E-01

8.30E-09

  1. Best matching suggested sequences between RNAC and NucleicNet are underlined. R: A/G, M: A/C, Y: C/T, H: A/C/T, W: A/T, D: A/G/T, and N: A/C/G/U