Fig. 7 | Nature Communications

Fig. 7

From: Saline aqueous fluid circulation in mantle wedge inferred from olivine wetting properties

Fig. 7

Schematic model for migration of saline aqueous fluids. a Overview of subduction fluid migration. b Enlargement of the black rectangle in a. Slab-derived saline fluids can form an interconnected network in the mantle wedge at depths of ~80 km, and can percolate partly through the overriding mantle without causing melting or serpentinization to form a fluid reservoir in the forearc crust (blue thick open arrow). At depths <~80 km, where antigorite is still stable, slab-derived fluids can enter the cold corner of mantle wedge as a channelized flow along cracks. At depths >~80 km, saline fluid continuously infiltrates the mantle wedge with temperatures above ~1050 °C, which triggers the partial melting of peridotite67 (blue thick solid arrows). It should be noted that this hydrous peridotite solidus was constrained in a fertile peridotite system; the solidus temperature in a relatively depleted peridotite should be higher than that shown here. Magma ascent results in the formation of arc volcanoes (red arrows), although the location of the volcanic front is not directly related to the dihedral angle threshold for saline fluid. The geothermal structure is after Wada et al.80; the stability of antigorite is after Bromiley and Pawley78 and Evans et al.79; and the stability of chlorite is after Till et al.11. Atg antigorite, Chl chlorite.

Back to article page