Fig. 6: Phase transition to the chiral state B* with respect to elastic anisotropy \(\kappa\) and Ericksen number \(\,\text{Er}\,\). | Nature Communications

Fig. 6: Phase transition to the chiral state B* with respect to elastic anisotropy \(\kappa\) and Ericksen number \(\,\text{Er}\,\).

From: Microfluidic control over topological states in channel-confined nematic flows

Fig. 6

a \(B\) state appears in the phase diagram at large values of \(\kappa\) and at small values of \(\,\text{Er}\,\). The \({B}^{* }\) state is characterised by non-zero mid-channel tilt angle \({\theta }_{0}\) of the director. The phase border is fitted with the function \(\kappa =-A{(\text{Er}-C)}^{-\beta }+D\) with exponent \(\beta =1.36\), asymptote at \(\,\text{Er}\,=9.87\) and \(\kappa =0.97\). \({\text{Er}}_{D}=7.56\) indicates the value of Ericksen number at which \(D\) phase can be stabilised. b, c Cross sections of the phase diagram at \(\kappa =0.2\) and \(\,\text{Er}\,=50\), respectively, show a clear continuous phase transition between \(B\) and \({B}^{* }\) phase. In the vicinity of the transition region a power law reveals a critical exponent close to 0.5 (see insets). d Effect of intrinsic chirality on the mid-plane tilt angle \({\theta }_{0}\), obtained by numerical integration of Eq. (8). The symmetry of the pitchfork bifurcation at the second-order \(B\) to \({B}^{* }\) phase transition is broken by a chiral dopant into stable and metastable branches. In a chiral system, the tilt angle has an immediate onset at small non-zero flow rates instead of an abrupt onset at the transition flow rate. The dotted line indicates the solution for no intrinsic pitch, shown also in b.

Back to article page