Table 2 Comparison of methods with some invalid instruments.

From: A robust and efficient method for Mendelian randomization with hundreds of genetic variants

 

20 invalid variants

40 invalid variants

60 invalid variants

Method

Mean

SD

Power

Mean

SD

Power

Mean

SD

Power

Null causal effect: θ = 0

 Scenario 2: balanced pleiotropy, InSIDE satisfied

  Inverse-variance weighted

0.000

0.043

5.1

−0.001

0.057

5.5

0.000

0.068

5.4

  MR-Egger

0.002

0.120

5.4

0.000

0.155

5.0

0.001

0.186

5.0

  Weighted median

0.000

0.034

4.3

−0.000

0.043

7.5

0.001

0.057

12.4

  MR-PRESSO

−0.000

0.030

7.8

−0.000

0.043

12.4

0.003

0.060

9.5

  Weighted MBE

−0.004

0.118

0.3

0.002

0.066

0.9

−0.001

0.161

1.8

  Contamination mixture

0.000

0.033

6.6

0.000

0.043

9.1

0.000

0.066

15.1

 Scenario 3: directional pleiotropy, InSIDE satisfied

  Inverse-variance weighted

0.133

0.031

96.6

0.266

0.038

100.0

0.400

0.044

100.0

  MR-Egger

0.005

0.111

5.3

0.010

0.135

5.4

0.015

0.148

5.9

  Weighted median

0.050

0.033

26.6

0.129

0.044

88.3

0.274

0.071

99.9

  MR-PRESSO

0.056

0.030

50.9

0.168

0.042

99.6

0.330

0.056

100.0

  Weighted MBE

0.008

0.068

0.3

0.028

0.109

2.1

0.086

0.156

22.3

  Contamination mixture

0.016

0.034

9.7

0.042

0.044

25.4

0.144

0.173

60.9

 Scenario 4: pleiotropy via confounder, InSIDE violated

  Inverse-variance weighted

0.118

0.040

85.6

0.213

0.041

99.6

0.289

0.040

100.0

  MR-Egger

0.280

0.121

81.1

0.400

0.110

96.1

0.457

0.100

99.2

  Weighted median

0.080

0.044

56.6

0.212

0.072

98.1

0.339

0.062

100.0

  MR-PRESSO

0.051

0.038

44.8

0.155

0.051

96.2

0.260

0.051

99.9

  Weighted MBE

0.028

0.300

0.7

0.137

0.403

15.9

0.259

1.589

33.6

  Contamination mixture

0.010

0.035

9.1

0.034

0.059

20.2

0.159

0.159

52.3

Positive causal effect: θ = +0.1

 Scenario 2: balanced pleiotropy, InSIDE satisfied

  Inverse-variance weighted

0.094

0.044

58.2

0.095

0.058

38.4

0.095

0.069

28.2

  MR-Egger

0.063

0.120

8.7

0.060

0.155

6.3

0.060

0.188

6.3

  Weighted median

0.091

0.036

69.1

0.092

0.045

59.9

0.092

0.060

51.5

  MR-PRESSO

0.095

0.033

89.0

0.095

0.044

73.7

0.098

0.066

58.2

  Weighted MBE

0.088

0.254

15.7

0.084

0.112

16.2

0.090

0.315

17.3

  Contamination mixture

0.097

0.036

82.7

0.098

0.047

70.8

0.101

0.074

56.9

 Scenario 3: directional pleiotropy, InSIDE satisfied

  Inverse-variance weighted

0.228

0.032

100.0

0.362

0.039

100.0

0.495

0.045

100.0

  MR-Egger

0.069

0.115

9.7

0.075

0.137

9.0

0.078

0.150

9.0

  Weighted median

0.144

0.035

98.1

0.227

0.046

100.0

0.372

0.071

100.0

  MR-PRESSO

0.156

0.032

100.0

0.278

0.046

100.0

0.440

0.058

100.0

  Weighted MBE

0.090

0.096

25.0

0.132

0.233

44.3

0.189

0.247

69.1

  Contamination mixture

0.114

0.036

92.5

0.146

0.050

94.4

0.305

0.228

98.1

 Scenario 4: pleiotropy via confounder, InSIDE violated

  Inverse-variance weighted

0.214

0.041

100.0

0.307

0.042

100.0

0.384

0.041

100.0

  MR-Egger

0.360

0.123

91.8

0.482

0.111

98.9

0.550

0.101

99.8

  Weighted median

0.176

0.047

99.1

0.309

0.073

100.0

0.434

0.063

100.0

  MR-PRESSO

0.149

0.042

99.0

0.256

0.054

100.0

0.361

0.051

100.0

  Weighted MBE

0.102

0.487

8.4

0.225

0.401

22.5

0.453

1.416

37.8

  Contamination mixture

0.109

0.040

88.4

0.140

0.070

86.4

0.301

0.165

91.5

  1. No one method outperformed all others in every scenario, but the contamination mixture method had good overall performance across scenarios with up to 40 invalid instruments out of 100. Performance with 60 invalid instruments was generally poor for all methods. Mean, standard deviation (SD) of estimates and empirical power (%) in simulation study for Scenarios 2, 3 and 4. MR-PRESSO Mendelian Randomization Pleiotropy RESidual Sum and Outlier method of Verbanck et al.17; MBE mode-based estimate of Hartwig et al.16