Fig. 5: HOFA states and fragile Dirac semimetal phase in β′-PtO2.
From: Strong and fragile topological Dirac semimetals with higher-order Fermi arcs

a Bulk bands incorporating the effects of SOC of the candidate Dirac semimetal β′-PtO2 in SG 136 (\( P{4}_{2}/mnm1^{\prime} \))60,61. Unlike in the Dirac semimetals α″-Cd3As2 and KMgBi examined in Fig. 4, the kz = 0 plane of β′-PtO2 is equivalent to a 2D TCI with mirror Chern number \( {C}_{{M}_{z}}=2 \) (ref. 61 and Supplementary Note 13). b The hinge spectrum of β′-PtO2 exhibits two narrowly split HOFA states connecting the hinge projections of the bulk 3D Dirac points (white) to the projections of two surface TCI cones at kz = 0 (blue). Fixing the system filling to that of the bulk Dirac points, we find that the lower HOFA state in energy in (b) is half-filled, and therefore exhibits a topological quadrupole moment, and the higher state is unoccupied, and is thus topologically trivial, as discussed in Supplementary Notes 9 and 13. c In the presence of a z-directed external electric field, the surface TCI cones in β′-PtO2 become gapped (blue), allowing for the two HOFA states to meet at kz = 0 in a quarter-filled Kramers pair of corner modes that is characteristic of the fragile phase introduced in this work (Figs. 2i–k, 3e, h, and Supplementary Notes 4, 9, and 13). The bulk band structure in (a) was obtained from first-principles, and then used to fit a tight-binding model whose hinge Green's functions in the absence and presence of an external electric field are shown in (b) and (c), respectively (Supplementary Note 13).