Fig. 6: Loss of autophagy increases the number of synaptogenic filopodia through defective synaptic seeding factor degradation, leading to increased synapse formation throughout development. | Nature Communications

Fig. 6: Loss of autophagy increases the number of synaptogenic filopodia through defective synaptic seeding factor degradation, leading to increased synapse formation throughout development.

From: Autophagy-dependent filopodial kinetics restrict synaptic partner choice during Drosophila brain wiring

Fig. 6

ac Quantification of filopodia numbers (a), synaptogenic filopodia numbers (b), and Brp puncta numbers (c) during synaptogenesis (P40–P90) per R7 axon terminal based on fixed data. n = 40 terminals per condition. df Markov State Model simulation based on data in (a) and live data at P + 60% (Fig. 5) for filopodia numbers (d), synaptogenic filopodia numbers (e), and Brp puncta numbers per R7 axon terminal (f). g The mechanistic model: accumulation of synaptic seeding factors stabilizes synaptogenic filopodia; autophagic degradation of synaptic seeding factors destabilizes filopodia. h Measured (solid bars) and simulated (striped bars) synaptogenic filopodia numbers at P + 60% (the simulated data are based on synaptic seeding factor availability, see Supplementary Fig. 6). n = 8 axon terminals from independent live-imaging sessions. i Representative images of synaptic seeding factors (Syd-1 and Liprin-α) localizing to synaptogenic filopodia. Repeated three times independently with similar results. j, k Quantifications of the number of Liprin-α (j) and Syd-1 (k) positive synaptogenic filopodia. n = 30 terminals per condition. Kruskal–Wallis and Dunn’s as post-hoc test; *p < 0.05, ***p < 0.001. Error bars denote mean ± SEM. Source data are provided as a Source Data file.

Back to article page