Fig. 3: Combined TMZ and CD47 blockade enhances GBM cell phagocytosis and cross-priming of antigen-specific T cells by BM antigen presenting cells (APCs). | Nature Communications

Fig. 3: Combined TMZ and CD47 blockade enhances GBM cell phagocytosis and cross-priming of antigen-specific T cells by BM antigen presenting cells (APCs).

From: Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity

Fig. 3

Combined TMZ and anti-CD47 antibody (aCD47) treatment enhances murine (a) and human (b) GBM cell phagocytosis by BM APCs. GL261, n = 8; CT-2A, n = 9; LN229, U251, U87, n = 6. **p < 0.05, one-side ANOVA with Bonferroni post hoc correction. c Blocking of calreticulin negated the enhanced phagocytosis effect of combined TMZ and anti-CD47 antibody treatment. n = 8, **p < 0.01, unpaired Student’s t test. d Immunofluorescence images of tumor infiltrating BM cells (red) and microglia (green). e Quantification of tumor-infiltrating BM cells and microglia. Control, n = 8; combo, n = 6. Unpaired Student’s t test. f Combined TMZ and anti-CD47 antibody treatment enhanced the cross-presentation of MHC-bound cOVA-derived SIINFEKL peptide on APCs. n = 8, **p < 0.01, one-side ANOVA with Bonferroni post hoc correction. g The enhanced antigen cross-presentation effect mediated by combined TMZ and anti-CD47 antibody was reduced with the addition of a calreticulin blocking peptide. GL261, n = 8, CT2A, n = 5. **p < 0.01, unpaired Student’s t test. h, i Combination TMZ and anti-CD47 antibody treatment enhanced cross-priming of cOVA antigen specific T cells. n = 6, **p < 0.01, one-side ANOVA with Bonferroni post hoc correction. Error bar = mean ± standard deviation.

Back to article page