Table 1 Statistical models of mTADA.
From: mTADA is a framework for identifying risk genes from de novo mutations in multiple traits
Hypothesis | Proportion | First trait | Second trait |
---|---|---|---|
H0 | π0 | \(x_{i1}\sim Poisson\left( {2N_1\mu _i} \right)\) | \(x_{i2}\sim Poisson(2N_2\mu _i)\) |
H1 | π1 | \(x_{i1}\sim Poisson(2N_1\mu _i\gamma _{i1})\) \(\gamma _{i1}\sim Gamma(\bar \gamma _1\beta _1,\beta _1)\) | \(x_{i2}\sim Poisson(2N_2\mu _i)\) |
H2 | π2 | \(x_{i1}\sim Poisson(2N_1\mu _i)\) | \(x_{i2}\sim Poisson(2N_2\mu _i\gamma _{i2})\) \(\gamma _{i2}\sim Gamma(\bar \gamma _2\beta _2,\beta _2)\) |
H3 | π3 | \(x_{i1}\sim Poisson(2N_1\mu _i\gamma _{i1})\) \(\gamma _{i1}\sim Gamma(\bar \gamma _1\beta _1,\beta _1)\) | \(x_{i2}\sim Poisson(2N_2\mu _i\gamma _{i2})\) \(\gamma _{i2}\sim Gamma\left( {\bar \gamma _2\beta _2,\beta _2} \right)\) |