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Experimental exchange of grins between quantum
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Intuition suggests that an object should carry all of its physical properties. However, a

quantum object may not act in such a manner—it can temporarily leave some of its physical

properties where it never appears. This phenomenon is known as the quantum Cheshire cat

effect. It has been proposed that a quantum object can even permanently discard a physical

property and obtain a new one it did not initially have. Here, we observe this effect experi-

mentally by casting non-unitary imaginary-time evolution on a photonic cluster state to

extract weak values, which reveals the counterintuitive phenomenon that two photons

exchange their spins without classically meeting each other. A phenomenon presenting only

in the quantum realm, our results are in stark contrast with the perception of inseparability

between objects and properties, and shed new light on comprehension of the ontology of

observables.
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Quantum paradoxes1, which exhibit counterintuitive phe-
nomena, have provided multiple perspectives in study of
the fundamentals of quantum mechanics, from Bell non-

locality2, quantum contextuality3 to macro-realism4. Recently, the
quantum Cheshire cat Gedankenexperiment, presented by
Aharonov et al.5, illustrated the counterintuitive phenomenon
that a physical property can be disembodied from its physical
carrier, akin to the scene A grin without a cat in the story Alice in
Wonderland6. In the context of quantum Cheshire cat, the pos-
sibility of isolating an object from its physical properties7 has
sparked the interest of theoretical physicists. Soon after, exten-
sions and further discussions of more general scenarios were
presented8–12. Also, the effect of quantum Cheshire cat has been
found to have intrinsic links to other quantum paradoxes: for
instance, the three-box paradox13.

In principle, experimental observation of the quantum Che-
shire cat effect can be implemented in following perspectives:
first, because the physical property is isolated from its carrier,
changes in that property should not affect the evolution of the
carrier, provided that the final quantum interference is not dis-
turbed. Second, if one have the ability to measure the “cat” and
“grin” observables, the effect can also be deduced from the
measured values. With the help of significant advances in weak
measurement techniques achieved in various quantum systems,
experimental observation of the quantum Cheshire cat effect has
been presented in neutronic14 and photonic system15. However,
while these observations were based on true quantum objects (i.e.,
single neutrons or photons), the results do not strictly support the
unique quantum character of the cat, because completely identical
phenomena can be observed with classical light16. Although it is
commonly accepted that quantum interference plays a crucial
role in the quantum Cheshire cat effect17, experiments involving
only the first-order interference cannot resolve the question of
whether, in the sense of quantum mechanics, the grin of the
“Cheshire cat” is left behind.

In this article, we report an experiment with manifoldly
entangled photons that demonstrates a stronger object–property
separation, whereby an object can permanently drop a certain
property and acquire a property that it did not have from another
object11. The photons are taken as “Cheshire cats”, and their
polarisations as “grins”. A bilayer Franson interferometer is
exploited to post-select over the desired ensemble. The trails of
the cats and grins can be exposed by weak values for the corre-
sponding observables, from which it is deduced that both of the
grins are first separated from their carrier cats and then swapped.
The required weak values are extracted by means of perturbation,
more explicitly, adding various kinds of density filters to cast
imaginary-time evolution (ITE) on the system, which spares the
need of introducing an additional pointer to a complex system
for weak value extraction. This method may also find its
usage in other fields such as contextuality-based quantum
computation18,19 and quantum metrology20. The results over-
come the main criticism of previous experiments that the
separation can also be observed in classical systems, and that the
disembodiment is temporary. The apparent separation of the
physical properties from the quantum objects, and the exchanges
of these properties lucidly exhibit the genuine quantum feature of
the quantum Cheshire cats.

Results
Schematic illustration. The narrative of two Cheshire cats
exchanging their grins is plotted in Fig. 1. The creatures of
Cheshire cats can freely take off their grin in Wonderland, but are
not allowed to do so in the real world. Two Cheshire cats named
Anna and Belle are spawned at distant locations. Each of them

enters the Wonderland via a one-way channel denoted by the
grey line and sends its grin forward via another one-way channel
denoted by the coloured line. The separation can be revealed by a
courier called “weak value”. The cats do not expect that the
mischievous designer leads Anna’s coloured grin to appear on
Belle and vice versa. Upon returning to reality, Anna gets Belle’s
grin and has to put it on to avoid being faceless. This weird story
may actually take place in the quantum realm. A photon, which is
a spin-1 boson, is forbidden from being observed without spin.
However, it can be separated from its spin during a quantum
process, as is well demonstrated in quantum Cheshire cat
experiments14–16. By manipulating the channels of photons and
their spins to twist the internal link, we can deterministically swap
the spins of two photons while preventing them from appearing
at the same site.

Theoretical layout. A set of properly defined observables can
help describe the perplexing behaviors of quantum Cheshire cats.
The path (“cat”) observables, revealing the spatial positions of the
cats, read Πu � uj i uh j and Πd � dj i dh j, with u and d denoting
the two possible paths a Cheshire cat can take. Both of the pro-
jectors have an eigenvalue of one to indicate the existence of the
cat, and an eigenvalue of zero to indicate the absence of the cat in
the corresponding path. The spin observable is given by the Pauli
operator σz ¼ "j i "h j � #j i #h j, which has a pair of eigenvalues ±1,
with ↑ and ↓ denoting the smile and frown of a Cheshire cat. To
detect the exact spin in one path (“grin”, e.g., in the upper path), a
product of the two observables should be introduced, which reads
σz ⊗ Πu. The product observable has three eigenvalues: ±1 and 0,
corresponding to the eigenstates "j i uj i, #j i uj i and the degenerate
subspace spanned by "j i dj i and #j i dj i, respectively.

The quantum Cheshire cat effect is best witnessed via the weak
values of the cat and grin observables. The weak value of an
observable O with respect to pre-selection ξj i and post-selection
ζh j is defined as21:

Oh iw ¼ ζ jOjξh i
ζ jξh i ; ð1Þ

which describes the conditioned average of the observable for a
pre-/post-selected ensemble. By associating the locations of
observables to their corresponding weak values, tracing physical
object and properties in a specific process has been made
possible14,22. Precisely, for an observable with spectrum of 0 and
±1, a null weak value Oh iw ¼ 0 indicates that the property
represented by the observable is not in presence; a unit weak

Weak
values

u A

d A

d B

u B

Fig. 1 Schematic illustration. A non-contacting grin exchange takes place
between two quantum Cheshire cats. The cats Anna with sunglasses and
Belle without sunglasses independently enter two bilayer channels, where
the sundered grins from the cats can be revealed by their weak values. The
structure of the channels is twisted so the two paths for Anna and Belle
denoted by u and the two denoted by d ultimately join each other,
respectively. Consequently, after exiting the setup, both cats are astonished
to find that they have swapped grins without having met each other.
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value Oh iw ¼ 1, conversely, indicates that the corresponding
property is here. The weak values may have anomalous behaviors.
For instance, the settings in the first proposed quantum Cheshire
cat Gedankenexperiment5 leads to Πuh iw ¼ σz � Πdh iw ¼ 1 and
Πdh iw ¼ σz �Πuh iw ¼ 0, so a cat and its grin is discovered at
different sites, creating an apparent object–property separation.

What happens to the cats in Fig. 1 successfully passing through
the pre- and post-selection? For this ensemble, Anna has travelled
through the path marked by d, whereas Belle has taken the path u;
the spin of Anna appears in the path u, whereas the spin of Belle
appears in the path d. It follows the above properties of weak
value that:

Πν
μ

D E
w
¼ δμdδνA þ δμuδνB; ð2Þ

σνz �Πν
μ

D E
w
¼ δμuδνA þ δμdδνB; ð3Þ

here, the δ symbol is the Kronecker-δ function, μ∈ {u, d} denotes
possible paths and ν∈ {A, B} indexes the cat names. Given the set
of weak values, when the two channels marked by u combine, the
input modes, namely, the spin from Anna and the body from
Belle, have to join each other to fire a detector. A similar event
takes place on the channels marked by d, where Anna acquires
Belle’s spin. In other words, each of the two quantum Cheshire
cats deterministically swaps grin with its counterparts.

One may ask whether the particular configuration described
above can even be arranged. Interestingly, entanglement in
quantum theory supplies the required catalyst here, that the two
cats can indeed exchange their grins even they can never be found
at the same location. To observe such a counterintuitive
phenomenon, the system should be pre-selected as a four-qubit
linear cluster state ξj i ¼ ½� Φ�j i � uAdB

�� �þ Φþj i � dAuB
�� ��= ffiffiffi

2
p

,

and the ensembles for post-selection are accordingly chosen to be
ζj i ¼ Dj i�2 � Ψ�j i, with Dj i ¼ ð "j i þ #j iÞ= ffiffiffi

2
p

. Here, the states
before and after the direct product symbol correspond to the
system’s “cat” and “grin” degrees of freedom. Φ±j i and Ψ ±j i
represent the celebrated Bell states, explicitly defined as
Φ±j igrin ¼ 1ffiffi

2
p ð "A"B�� �

± #A#B�� �Þ, and Ψ±j icat ¼ 1ffiffi
2

p ð uAdB�� �
±

dAuB
�� �Þ. The superscripts “A” and “B” are indices for cats Anna
and Belle. The exchange of grins can be verified by substituting ξj i
and ζh j into (1) to immediately recover (2) and (3). Observing that
ΠA

uΠ
B
u ξj i ¼ ΠA

dΠ
B
d ξj i ¼ 0, such behavior is strictly forbidden for a

localised classical object because it invokes action at a distance, so
the Cheshire cats here are purely from the quantum realm.

Weak value extraction. It is argued that the quantum Cheshire
cat effect is nothing other than an optical illusion. As a strong
measurement corresponding to an operator projects the system
onto its eigenspace by Lüder’s rule, a series of non-commuting
sequential measurements that do not share all eigenvectors can-
not reveal meaningful information about the original state.
However, a disturbance-friendly measurement (i.e., weak mea-
surement), can actually reveal the paradox, which can be wit-
nessed from the weak values of the observables extracted from the
pre- and post-selected ensembles5.

The quantum measurement procedure, including von Neu-
mann measurement, positive operator-valued measurement and
weak measurements, requires an auxiliary pointer object for
readout26,27. See Fig. 2a, to extract the weak value Osh iw, the
standard procedure using weak measurement weakly couples
the system to a pointer with a Hamiltonian ~H ¼ Os � P, where
the subscript s indicates that Os only acts on the system, and P
is the pointer’s momentum operator. One then strongly collapses
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Fig. 2 Design of experiments. a Concept of weak value extraction. Top: rigorous weak measurement. The system and pointer are entangled by coupling
evolution U ¼ expð�iHtÞ with the interaction Hamiltonian being H ¼ Os � P. The demon cast judicious choices of post-selection to obtain the weak value
Osh iw. Mid: interpretation of weak value without pointer. The system's evolution Us due to a perturbation is characterised by weak value in the weak
interaction regime23. Bottom: weak value extraction based on perturbation. A linear relationship between the post-selection probability and the interaction
time of ITE can be established, whose incline gives the real part of the weak value Oh iw. b Photon source. Biphoton (central wavelength 813.4 nm), four-
qubit hyperentangled state is generated via type-I spontaneous parametric down-conversion (SPDC) process by pumping a β-barium borate (BBO) crystal
twice in a confocal structure24,25. CM concave mirror, QWP quarter-wave plate. c The main setup to exchange grins. Neutral density filter (ND) and
polarisation-sensitive density filter (PD) implement the perturbation on the path observable Π and the conditional spin observable σz ⊗ Π, respectively. A
polarisation independent BS, followed by four polarisation analysers, each composed of a set of quarter- or half-wave plates (QWP, HWP) and a PBS,
implements post-selection. Four 0.2-mm-thick glass plates (GPs) are inserted in the four arms with one of them rotatable to compensate the biphoton
phase. The photons are filtered by 3-nm-bandwidth interference filters (IF) with a central wavelength of 813.4 nm before collected by four single-mode
fibres and guided to single-photon detectors. d A PD is constructed from two polarisation beam displacers (BDs) and an ND filter inserted in one arm.
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the system to some judiciously chosen target states. Because the
pointer is now entangled with the system by interaction
~U ¼ expð�i ~HtÞ, it will be steered to different conditional output
states, enabling the calculation of corresponding weak value21.

Are there alternative approaches to extract the weak value
other than weak measurements? Recent advances have given
affirmative answers. For instance, in the work of directly
measuring an entangled biphoton state28, the authors read out
the required weak values of non-local observables via strong
measurements and the concept of modular value29. Besides, a
linear relationship exists between the probability of successful
post-selection and the strength of a unitary perturbation.
Consequently, the imaginary part of the weak value can be
linked to the linear model’s slope23. In this approach, no ancillary
pointer is needed and the interaction of weak measurement can
be effectively substituted by some perturbations in a weak manner
where quantum coherence can still be preserved.

For an observation of quantum Cheshire cats, schemes of weak
value extraction with the feature of resource-saving are quite
preferred, as both the photons’ polarisation and path degrees of
freedom have been consumed. Because the coefficients in the pre-
and post-selection rays in the scheme are real, the weak values for
both the “cat” and the “grin” observables have no imaginary part.
Following the insight of ref. 23, here we establish a linear
relationship between the probability of successful post-selection
and the strength of perturbations with the form of ITE, and
exploit this relationship to characterise the weak values without
introducing any auxiliary pointer states. The non-unitary ITE
evolution generated by an observable O reads UðH; tÞ ¼ e�Ht ,
where H ¼ O is the Hamiltonian of the system and the
interaction time t→ 0 is an analogue to the coupling strength
in the system–pointer coupling process. Explicitly, let N0 ¼
j ξjζh ij2 and NðUÞ ¼ j ζjUjξh ij2 be the probabilities of conducting
a successful post-selection before and after applying the
perturbation, then, the real part of the weak value can be linked
to the probability correction, that:

∂

∂t
NðUÞ
N0

����
t!0

¼ �2Re Oh iw: ð4Þ

The detailed proof is presented in the “Methods” section.
Consequently, when ITEs with sufficiently small interaction
times (see Supplementary Note 2) are imposed on the pre-
selection state, a linear relationship exists between the probability
correction and the interaction time, and the model’s slope is
proportional to the real part of the weak value of the ITE’s
generating Hamiltonian.

Experimental implementation. We will demonstrate the
exchange of grins between quantum Cheshire cats with an optical
setup. Two entangled photons are adopted as the quantum
Cheshire cats. Utilising the photon’s intrinsic pseudo-spin degree
of freedom, namely, the polarisation, the smile ( "j i) and frown
( #j i) of the cats are represented by photon’s horizontal ( Hj i) and
vertical ( Vj i) polarisation. To prepare the desired ensembles, a
hyperentanglement biphoton source and a bilayer Franson
interferometer are exploited. Each photon has two possible paths,
one in the upper layer of the Franson interferometer and one in
the lower layer. They correspond to the path states uj i and dj i,
respectively.

The photon source of the experimental setup is shown in
Fig. 2b. A vertically polarised ultraviolet laser (λ= 406.7 nm) was
focused on a type-I cut β-barium borate (BBO) crystal. The
degenerate spontaneous parametric down-conversion (SPDC)
process allows horizontally polarised photon pair emission at
λ= 813.4 nm along two opposite rays on a conical surface. Both

the laser and the down-converted photons’ wavefunction pass
through a QWP (λ/4 at 813.4 nm, optical axis oriented at 45°),
reflect off a spherical (f= 150 mm) mirror, pass through the wave
plate and are focused again on the BBO crystal. The polarisation
of down-converted photons is rotated to vertical by double-
passing the QWP, and the SPDC process can again produce
horizontally polarised photon pairs. Finally, a positive lens (f=
150 mm) transforms the conical parametric emission to
cylindrical.

Due to the system’s confocal structure and small dispersion,
the wavefunctions of down-converted photons from successive
pumping processes are spatially and temporally overlapped,
thereby producing an entanglement ring. Selecting two pairs of
opposite points on the ring results in biphoton polarisation-path
hyperentangled states25. The photon on the left side is chosen as
“Anna” and that on the right side is called “Belle”. The
hyperentangled state reads Φþj ipol � Ψþj ipath, which is further
converted to the cluster state ξj i by inserting a half-wave plate
(HWP) with its optical axis oriented at 0° into Anna side’s upper
interferometer arm, as shown in Fig. 2c. The post-selection on ζj i
is conducted by first superimposing Anna and Belle’s wavefunc-
tion on the upper and lower layers, respectively, on a beam
splitter (BS), and then picking out the diagonal polarisation with
a set of quarter-wave plates (QWPs) and HWPs, followed by a
polarising beam splitter (PBS). The spatial wavefunction is
maximally entangled for the Franson interference occurring on
the BS (more details are given in the Supplementary Note 5).

To implement the perturbation of ITE and acquire the weak
values, a neutral density (ND) filters or polarising dependent (PD,
only attenuates vertically polarised components) filter is inserted
into one of the four arms of the interferometer before
recombining the photons on the BS, and its position is slightly
adjusted to block different portions of light, effectively changing
tn(p). The corresponding Hamiltonians are Πν

μ and
ð1� σzÞν=2�Πν

μ , respectively. So, an ND filter serves to obtain
the path weak value hΠν

μiw, and the spin weak value hσνz �Πν
μiw is

linked to the system’s behaviors under both kinds of filter
insertion. Moreover, let us define the intensity transmissivity γn,
γp of the filter as the intensity ratio of an unpolarised light after
and before passing through the neutral and polarising filter,
respectively. Then, the interaction time tn(p) can be associated by
γn(p) by γn ¼ e�2tn and γp ¼ ð1þ e�2tpÞ=2. Note that the
definition for polarising filter is equivalent with a 2γp− 1 and
unity transmissivity for vertically and horizontally polarised
photons, respectively. Also, let Nν

μ;nðpÞ denote the ratio of
coincidence rates after and before neutral or polarising filter
insertion in the path μ of photon ν. Substituting the definitions of
Hamiltonians to (4) yields:

Πν
μ

D E
w
¼ � 1

2

∂Nν
μ;n

∂tn
; ð5Þ

σνz � Πν
μ

D E
w
¼ � 1

2

∂Nν
μ;n

∂tn
þ ∂Nν

μ;p

∂tp
: ð6Þ

The detailed proof of (6) goes to the “Methods” section.
Finally, the eight weak values hΠν

μiw and hσνz � Πν
μiw are

deduced by filtering the photons in one arm by different ratios,
recording the corresponding counting rates, and least square
fitting the linear model (6) with recorded data points of
coincidence against transmissivity, whose slope can be related
to the weak values. The brightness of the cluster state is about 1 ×
103 counts per second, and integration time for each data point is
100 s. The rate of dark coincidence events is of the magnitude of
10−2 Hz. The precise implementation of pre- and post-selection
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(see Supplementary Notes 3 and 5) guarantees the weak values
have negligible imaginary parts. For each data point, the count of
coincident events Nν

μ;nðpÞ is normalised by the value when the
filter is not inserted, and the N-t data points are asymptotically
fitted to a linear model in the neighbourhood of tn(p)→ 0, so the
required derivatives are given by the model’s slope. The
eight groups of recorded Nν

μ;nðpÞ-t points and their linear fitted
models are plotted in Fig. 3. From the models’ slopes, the weak
values are deduced to be ΠA

u

� �
w ¼ �0:01ð3Þ, ΠA

d

� �
w ¼ 1:04ð4Þ,

ΠB
u

� �
w ¼ 1:11ð4Þ, ΠB

d

� �
w ¼ 0:06ð4Þ, σAu

� �
w ¼ 1:01ð3Þ, σAd

� �
w ¼

�0:04ð4Þ, σBu
� �

w ¼ 0:10ð2Þ, and σBd
� �

w ¼ 0:04ð3Þ. The counting
events for photon detection follow Poisson distribution, and
following this statistic, the standard deviation for weak values
given in the parentheses is numerically estimated via Monte
Carlo simulation. The calculated values are consistent with the
theoretical values, and shows that for the successfully post-

selected ensemble, Anna always comes from the lower layer,
whereas its spin effectively comes from the upper layer. The case
of Belle is contrary, that the photon is from the upper layer with
its spin separated on the lower layer. Finally, on the BS, Anna
eventually receives the spin of Belle, and Belle captures Anna’s
spin.

Discussion
The usefulness and genuine quantum property of quantum
Cheshire cat have been intensely debated. Introducing second-
order interference may provide some insight into these topics.
Comparing with the original quantum Cheshire cat proposal with
only first-order interference, the observed effects in this demon-
stration are significantly more robust, because entanglement
provides additional resilience against local disturbances. For
example, when a local disturbance of the bit flip error is applied
on one of the arms of the interferometer, the phenomenon of
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quantum Cheshire cat is not affected, that the spins can still not
be detected on the interferometer arms where the photons can be
detected (proof details are given in Supplementary Note 4). This
result is not valid for first-order demonstrations, where the
Cheshire cat is more prone to disturbance17. Moreover, when
the bit flip error is applied to the arms with hσνz � Πν

μiw ¼ 0, the
weak values observed in (2) and (3), together with the final
counting rate, are left unchanged. This observation supports the
proposal5, that the unwanted disturbance can be completely
removed in a post-selected manner by producing quantum
Cheshire cats, where the affected observables are confined out of
the regions with disturbance. Hopefully, its application may also
be found in the tasks about quantum communication, for
example, teleporting a spin through a noisy channel.

Regarding the genuine quantum property of quantum Cheshire
cats, although quantum objects are used in previous demonstra-
tions, the observed effects did not exclude the interpretation with
other languages such as classical electrodynamics16. Conversely,
the entangled photons, together with the Franson interference
exploited in this demonstration, manifest Bell-type non-locality
and reject any classical description. By unveiling the nature of
quantum Cheshire cat, the stereotype that a property must
faithfully belong to an object is overthrown and becomes another
counterintuitive, seemingly paradoxical phenomenon provided by
the quantum theory.

We have observed the phenomenon of grin swapping between
two quantum Cheshire cats, which only appears in a pre- and
post-selected entangled quantum system. The required weak
values are acquired with high accuracy by casting ITE in a linear
optics setup. Our experiment should help foster new research in
the area of quantum information and inspire new ideas regarding
the ontology of physical properties beyond the dependent object.

Methods
Proof of the perturbation method. In this section, we derive the link between the
probability of successful post-selection and the interaction time in the context of
ITE. The result for a unitary perturbation was already described in ref. 23. Origi-
nating from Wick rotation in special relativity30, the ITE operation is applied in,
e.g., quantum field theory31 and quantum simulations32. The parameter t is not
generally restricted, however, in this scheme it has to be sufficiently small to
resemble a vanishing interaction time and guarantee minimal disturbance of the
system.

Recall that for ITE the relation between non-unitary operation and the
Hamiltonian is UðH; tÞ ¼ expð�HtÞ. Assuming weak interaction t→ 0, the
detection probability of a pre- and post-selected event perturbed by ITE (with
Maclaurin series up to the first order of t) reads:

NðUÞ ¼ j ζjUjξh ij2 ¼ j ζjð1� Ot þ :::Þjξh ij2
¼ N0 � 2tRe ξjζh i ζjOjξh i þ Oðt2Þ; ð7Þ

where in the last term the big-O notation is adopted, which is not to be confused
with the operator O that generates the ITE. By dividing both sides of Eq. (7) by N0

and taking partial derivative with respect to t:

∂

∂t
NðUÞ
N0

����
t!0

¼ �2Re
ζ jOjξh i
ζ jξh i

� �
¼ �2Re Oh iw: ð8Þ

From Eq. (8), the real part of the weak value Oh iw is half of the additive inverse of
the derivative of the detection probability normalised by its undisturbed value, with
respect to the interaction time t. In this demonstration, all parameters in pre- and
post-selection states and the ITE non-unitary evolution operator are real numbers,
so all weak values have to be purely real. From now on we do not distinguish the
weak value from its real part.

For location measurement at path μ of photon ν, the Hamiltonian is taken to be
Hν

μ;n ¼ Πν
μ , the corresponding ITE operator acting on the state vector is

Uν
μ;nðHν

μ;n; tnÞ ¼ 1� Πν
μð1� e�tn Þ. The operation complying with this ITE is to

decrease the photon number in photon ν’s path μ. Explicitly, an ND filter with
transmissivity γn ¼ e�2tn is introduced to partially block this path, which multiplies
the coincidence rates by Nν

μ;n . It follows from (8) that (omitting t→ 0):

Πν
μ

D E
w
¼ � 1

2

∂Nν
μ;n

∂tn
: ð9Þ

Similarly, for spin measurement at path μ of photon ν the Hamiltonian is chosen to

be Hν
μ;p ¼ ð1� σzÞν � Πν

μ=2. Then, Uν
μ;pðHν

μ;p; tÞ ¼ 1� Πν
μð1� σzÞνð1� e�tp Þ=2,

experimentally, this corresponds to a PD filter insertion, multiplying the
coincidence rates by Nν

μ;p . By substituting the form of ITE operator into (8) and
taking advantage of (9):

Πν
d

� �
w � σνz � Πν

μ

D E
w
¼ � ∂Nν

μ;p

∂tp
; ð10Þ

σνz � Πν
μ

D E
w
¼ � 1

2

∂Nν
μ;n

∂tn
þ ∂Nν

μ;p

∂tp
: ð11Þ

Observing that the transmissivity for vertically and horizontally polarised photons
are e�2tp and 1 respectively, γp ¼ ð1þ e�2tp Þ=2 again correlates the interaction time
with the experimentally measurable transmissivity.

Polarising density filter. For the measurement of photon spin information, the
required PD filter is a synthetic element. The formation of the PD filter is shown in
Fig. 2d. A pair of BDs, together with two HWPs separate and reconverges the
horizontally and vertically polarised wavefunction. An ND filter on the vertically
polarised path filters a fraction of photons to mimic the change of tp.

Data availability
The data that support the findings of this study are available from the authors upon
request.
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