Table 2 Summary statistics for DAs for all investigated models.

From: Identifying domains of applicability of machine learning models for materials science

 

Global (test set)

DA (validation set)

DA (identification set)

 

MAE

95AE

R

cov

MAE

95AE

R

cov

MAE

95AE

R

MBTR

14.2

54.1

0.83

44 (6)

7.6 (1.5)

18.8 (2.9)

0.88 (0.03)

44 (1)

7.6 (0.3)

20.7 (0.2)

0.89 (0.01)

SOAP

14.1

51.0

0.84

78 (3)

11.7 (1.8)

36.6 (10.8)

0.85 (0.01)

76 (1)

11.9 (0.4)

37.8 (2.0)

0.85 (0.00)

n-gram

14.7

51.1

0.83

52 (5)

10.2 (0.9)

32.6 (2.6)

0.86 (0.02)

54 (1)

10.3 (0.2)

35.5 (1.0)

0.86 (0.00)

Atomic

65.5

154.5

0.24

85 (1)

60.2 (7.8)

141.6 (28.5)

0.25 (0.09)

85 (0)

63.3 (1.5)

153.9 (5.5)

0.25 (0.02)

  1. Coverage (cov), mean absolute error (MAE), 95th-percentile absolute error (95AE), and coefficient of determination based on absolute error (R) are all estimated via the mean value of the relevant DA validation sets and DA identification sets. Standard deviations are in parentheses. Global values are computed over whole test set. MAE and 95AE are in units of meV/cation, cov values are in percentages.