Fig. 4: Identifying important residues for self/nonself-discrimination between similar eSRK–SP11 pairs. | Nature Communications

Fig. 4: Identifying important residues for self/nonself-discrimination between similar eSRK–SP11 pairs.

From: Mechanism of self/nonself-discrimination in Brassica self-incompatibility

Fig. 4

a Model structure of S46-eSRK–S46-SP11 complex. Green and cyan represent two S46-SP11 molecules in the heterotetramer, and pink and yellow represent two S46-eSRK molecules. Residues mutated in the pull-down assay are shown in orange. Left and right panels show close-up views of interfaces around CR III and around CR I–II, respectively. a, c Subscripts to the right of residue numbers indicate chain ID in the complex (a, b, eSRK; c, d, SP11). b Pull-down of S8-meSRK-HLH and its derivatives with biotin-S8-SP11 was performed as in Fig. 1b. S8-meSRK-HLHN271S,E273D,N337I and S8-meSRK-HLHN271S,E273D,N337I,E80G,S190P,Y198F,R367T proteins lost the ability to bind S8-SP11. c Model structure of the S36-eSRK–S36-SP11 complex. An overview of S36-SP11 docked with S36-eSRK dimer is shown in the left panel. Cyan represents S36-SP11 molecule, and pink and yellow represent two S36-eSRK molecules. Residues mutated in the bioassay are shown in orange. A close-up view of the CR III of S36-SP11 is shown in the right panel. The H62R mutation is shown in pink. Distances are shown in angstroms. d Pollination bioassay. S36-SP11- or mutant-treated (50 pmol) S36S36 pistils were pollinated with S12 pollen grains. Pollen tubes were observed by UV fluorescence microscopy after aniline blue staining. Arrow shows pollen tubes. Scale bars, 100 μm.

Back to article page