Fig. 6: In vivo assays of CSyGT and GmCslM activity using a yeast-expression system. | Nature Communications

Fig. 6: In vivo assays of CSyGT and GmCslM activity using a yeast-expression system.

From: A cellulose synthase-derived enzyme catalyses 3-O-glucuronosylation in saponin biosynthesis

Fig. 6

All overlays of chromatograms were analysed by LC–MS with selected-ion monitoring (SIM) of the theoretical m/z values of the compounds of interest. Signals were compared to authentic standards (standard) if available. a Chromatograms of in vivo-produced monoglucuronides by transformed triterpenoid aglycone-producing strains with GmCSyGT1–3, GmCslM1 or GmCslM2. b Chromatograms of products of transformed glycyrrhetinic acid-producing strains (GAs), selected based on the theoretical m/z values of 631.4 (left) and 645.4 (right) of glycyrrhetinic acid monoglucoside and monoglucuronide, respectively. c Chromatogram of in vivo-produced glucoglycyrrhizin (GLU, GA–GlcA–Glc) and intermediates by transformed glucoglycyrrhizin-producing platform strains (GLU). d Results of in vivo substrate-feeding assays of CSyGTs and GmCslMs. Structures of the substrates and full-length LC–MS chromatograms are shown in Supplementary Fig. 6. GA glycyrrhetinic acid (m/z 469.3), GA–GlcA glycyrrhetinic acid-3-O-monoglucuronide (m/z 645.4), GA–Glc glycyrrhetinic acid-3-O-monoglucoside (m/z 631.4), GL glycyrrhizin (m/z 821.4), GLU glucoglycyrrhizin (m/z 807.4), SBMG soyasapogenol B-3-O-monoglucuronide (m/z 633.4), OA oleanolic acid (m/z 631.4).

Back to article page