Fig. 2: Ballistic transport of BZ fermions over micrometer distances.
From: Long-range ballistic transport of Brown-Zak fermions in graphene superlattices

a Schematic of bend resistance measurements. Current I is applied between contacts 3 and 4, and voltage Vb is measured between 2 and 1, yielding the bend resistance, Rb = Vb/I. The voltage is positive for diffusive transport but becomes negative, if charge carriers move directly from current injecting contact 3 into voltage probe 1 (as shown by the red arrow). b Bend resistance for Dirac fermions in zero B (device D2 with W = 4 μm and θ ≈ 0°). Inset: Rb(B) taken at the minimum indicated by the arrow in the main plot. c Map Rb(Vg,B) for the same device. B was changed in steps of 50 mT. Pockets of negative Rb appear along ϕ/ϕ0 = 1/q and are seen in magenta. d Cross-sections from (c) for q = 2 and 3. The inset shows sign reversals in Rb plotted as a function of Beff = B – Bp/q for the minima marked by the color-coded arrows. T = 2 K for all the plots.