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Deep learning-based cross-classifications reveal
conserved spatial behaviors within tumor
histological images
Javad Noorbakhsh1,7, Saman Farahmand 2,7, Ali Foroughi pour1,7, Sandeep Namburi 1, Dennis Caruana3,

David Rimm 3, Mohammad Soltanieh-ha4, Kourosh Zarringhalam2,5 & Jeffrey H. Chuang 1,6✉

Histopathological images are a rich but incompletely explored data type for studying cancer.

Manual inspection is time consuming, making it challenging to use for image data mining.

Here we show that convolutional neural networks (CNNs) can be systematically applied

across cancer types, enabling comparisons to reveal shared spatial behaviors. We develop

CNN architectures to analyze 27,815 hematoxylin and eosin scanned images from The

Cancer Genome Atlas for tumor/normal, cancer subtype, and mutation classification. Our

CNNs are able to classify TCGA pathologist-annotated tumor/normal status of whole slide

images (WSIs) in 19 cancer types with consistently high AUCs (0.995 ± 0.008), as well as

subtypes with lower but significant accuracy (AUC 0.87 ± 0.1). Remarkably, tumor/normal

CNNs trained on one tissue are effective in others (AUC 0.88 ± 0.11), with classifier rela-

tionships also recapitulating known adenocarcinoma, carcinoma, and developmental biology.

Moreover, classifier comparisons reveal intra-slide spatial similarities, with an average tile-

level correlation of 0.45 ± 0.16 between classifier pairs. Breast cancers, bladder cancers, and

uterine cancers have spatial patterns that are particularly easy to detect, suggesting these

cancers can be canonical types for image analysis. Patterns for TP53 mutations can also be

detected, with WSI self- and cross-tissue AUCs ranging from 0.65-0.80. Finally, we com-

paratively evaluate CNNs on 170 breast and colon cancer images with pathologist-annotated

nuclei, finding that both cellular and intercellular regions contribute to CNN accuracy. These

results demonstrate the power of CNNs not only for histopathological classification, but also

for cross-comparisons to reveal conserved spatial behaviors across tumors.
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H istopathological images are a crucial data type for diag-
nosis of cancer malignancy and selecting treatment1,
indicative of their value for understanding cancer biology.

However, manual analysis of whole-slide images (WSIs) is labor-
intensive2 and can vary by observer3–5, making it difficult to scale
such approaches for discovery-oriented analysis of large image
collections. Image datasets for hematoxylin and eosin (H&E),
immunohistochemistry (IHC), and spatial -omic imaging tech-
nologies are rapidly growing6. Improved computational approa-
ches for analyzing cancer images would therefore be valuable, not
only for traditional tasks such as histopathological classification
and cell segmentation7 but also for novel questions such as the de
novo discovery of spatial patterns that distinguish cancer types.
The search for recurrent spatial patterns is analogous to the
search for common driver mutations or expression signatures
based on cancer sequencing8, yet this paradigm has been little
explored for cancer image data.

In the last few years, there have been major advances in
supervised and unsupervised learning in computational image
analysis and classification6,9, providing opportunities for applica-
tion to tumor histopathology. Manual analysis involves assess-
ments of features such as cellular morphology, nuclear structure, or
tissue architecture, and such pre-specified image features have been
inputted into support vector machines or random forests for tumor
subtype classification and survival outcome analysis e.g.,10–12.
However, pre-specified features may not generalize well across
tumor types, so recent studies have focused on fully-automated
approaches using convolutional neural networks (CNNs),
bypassing the feature specification step. For example, Schaumberg
et al. trained ResNet-50 CNNs to predict SPOP mutations using
WSIs from 177 prostate cancer patients13, achieving AUC= 0.74
in cross-validation and AUC= 0.64 on an independent set. Yu
et al. utilized CNN architectures including AlexNet, GoogLeNet,
VGGNet-1614, and the ResNet-50 to identify transcriptomic
subtypes of lung adenocarcinoma (LUAD) and squamous cell
carcinoma (LUSC)15. They were able to classify LUAD vs. LUSC
(AUC of 0.88–0.93), as well as each vs. adjacent benign tissues
with higher accuracy. Moreover, they were able to predict the
TCGA transcriptomic classical, basal, secretory, and primitive
subtypes of LUAD16,17 with AUCs 0.77–0.89, and similar subtype
classifications have been reported in breast18. Recently, Coudray
et al.19 proposed a CNN based on Inception v3 architecture to
classify WSIs in LUAD and LUSC, achieving an AUC of 0.99 in
tumor/normal classification. Further, their models were able to
predict mutations in ten genes in LUAD with AUCs 0.64–0.86,
and subsequently mutations in BRAF (AUC ~0.75) or NRAS
(AUC ~0.77) melanomas20. Other groups have used CNNs to
distinguish tumors with high or low mutation burden21. These
advances highlight the potential of CNNs in computer-assisted
analysis of WSIs.

Many critical questions remain. For example, prior studies
have focused on individual cancer types, but there has been
little investigation of how neural networks trained on one cancer
type perform on other cancer types, which could provide
important biological insights. As an analogy, comparisons of
sequences from different cancers have revealed common driver
mutations22,23, e.g., both breast and gastric cancers have frequent
HER2 amplification, and both are susceptible to treatment by
trastuzumab24,25. Such analysis is in a rudimentary state for
image data, as it remains unclear how commonly spatial beha-
viors are shared between cancer types. A second important
question is the impact of transfer learning on cancer image
analysis, which has been used in studies such as Coudray et al.19.
Transfer learning is used to pre-train neural networks using
existing image compilations Zhu et al.26. However, standard
compilations are not histological, and it is unclear how this affects

cancer studies. A third key topic is to clarify the features that
impact prediction accuracy. For example, recurrent neural net-
work approaches27 have been shown to distinguish prostate, skin,
and breast cancers at the slide level, but the relevant spatial fea-
tures are not well-understood. Determination of predictive fea-
tures is affected not only by the underlying biology but also by the
availability of spatial annotations and appropriate computational
techniques.

To investigate these questions, here we analyze 27,815 frozen
or FFPE whole-slide H&E images from 23 cancer types from The
Cancer Genome Atlas (TCGA), a resource with centralized rules
for image collection, sequencing, and sample processing. We have
developed image processing and convolutional neural network
software that can be broadly applied across tumor types to enable
cross-tissue analyses. Using these techniques, first, we show that
this CNN architecture can distinguish tumor/normal and cancer
subtypes in a wide range of tissue types. Second, we systematically
compare the ability of neural networks trained on one cancer type
to classify images from another cancer type. We show that cross-
classification relationships recapitulate known tissue biology.
Remarkably, these comparisons also reveal that breast, bladder,
and uterine cancers can be considered canonical cancer image
types. Third, we investigate driver effects by determining how
cancers with the TP53 mutation can be cross-classified across
tissues, including a comparison of transfer learning vs. full CNN
training. Fourth, we test how cellular vs. intercellular regions
impact CNN tumor/normal predictions, making use of cell-
resolution annotations from 170 colorectal and breast cancer
images. Our studies demonstrate that cross-comparison of CNN
classifiers is a powerful approach for discovering shared biology
within cancer images.

Results
Pan-cancer convolutional neural networks for tumor/normal
classification. We developed a CNN architecture to classify slides
from TCGA by tumor/normal status, using a neural network that
feeds the last fully connected layer of an Inception v3-based CNN
pretrained on ImageNet into a fully connected layer with 1024
neurons. This architecture is depicted in Fig. 1a, and a related
architecture for mutation classification (described in sections
below) is shown for comparison in Fig. 1b. The two final fully
connected layers of the tumor/normal CNN were trained on tiles
of size 512 × 512 from WSIs. Due to insufficient FFPE normal
WSIs in TCGA, for this task, we only used flash-frozen samples.
We trained this model separately on slides from 19 TCGA cancer
types having numbers of slides ranging from 205 to 1949
(Fig. 2a). In all, 70% of the slides were randomly assigned to the
training set and the rest were assigned to the test set. To address
the data imbalance problem28, the majority class was under-
sampled to match the minority class.

Figure 2b shows the classification results. We used a naive
training approach such that, after removal of background regions,
all tiles in a normal image are assumed normal and all tiles in a
tumor image are assumed tumor. The CNN accurately classifies
test tiles for most tumor types (accuracy: 0.91 ± 0.05, precision:
0.97 ± 0.02, recall: 0.90 ± 0.06, specificity: 0.86 ± 0.07. Mean and
standard deviation calculated across cancer types). We next
examined the fraction of tiles classified as tumor or normal within
each slide. The fractions of tiles matching the slide annotation are
0.88 ± 0.14 and 0.90 ± 0.13 for normal and tumor samples,
respectively (Fig. 2c) (mean and standard deviation calculated
from all cancer types pooled together). These fractions are high in
almost all slides, and the tumor-predicted fraction (TPF) is
significantly different between tumors and normals (P < 0.0001
per-cohort comparison of tumor vs. normal, Welch’s t test). We
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Fig. 1 Classification pipelines. a Transfer-learning pipeline for tumor/normal and subtype classification. b Full training pipeline for mutation classification.

a

b

c

d

e

B
R

C
A

K
IR

C

O
V

LU
S

C

LU
A

D

C
O

A
D

S
TA

D

U
C

E
C

H
N

S
C

cancertype

P
R

A
D

T
H

C
A

K
IR

P

B
LC

A

LI
H

C

R
E

A
D

S
A

R
C

PA
A

D

E
S

C
A

K
IC

H

2000

1000

N
um

be
r

of
 s

lid
es

P
er

-t
ile

cl
as

si
fic

at
io

n 
m

et
ric

P
re

di
ct

ed
 tu

m
or

 fr
ac

tio
n

pe
r 

sl
id

e
A

U
C

P
ea

rs
on

 r

0

1.0

0.9

0.8

0.7

1.00

0.75

0.50

0.25

0.00

1.00

0.99

0.98

0.97

0.4

0.2

0.0

Normal (test)

Normal (train)
Tumor (test)

Normal
Tumor

ROC
PR

*: p < 0.05
**: p < 0.01
***: p < 0.001
****: p < 0.0001

Tumor (train)

Precision
Recall
Specificity
Accuracy
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also performed the classification on a per-slide basis. To do this,
we used the TPF in each slide as a metric to classify it as tumor or
normal. This approach yielded extremely accurate classification
results for all cancer types (Fig. 2d, mean AUC ROC= 0.995,
mean PR AUC= 0.998). Confidence intervals (CI) of per-slide
predictions are given in Supplementary Fig. 1a (also see
“Methods”). The CI lower bound on all classification models
was above 90%, with cancer types having fewer slides or
imbalanced test data tending to have larger CIs. These results
indicate that our network can successfully classify WSIs as tumor/
normal across many different cancer types. These results were for
slide-level test/train splits of the data, but splitting at the patient
level instead had little effect on classification accuracy (see
“Methods” and Supplementary Fig. 1b). Most misclassification
was for adjacent normal slides with unexpectedly large predic-
tions for TPF. Manual pathology review indicated that such slides
often suffer from poor quality, tissue folding, or excessive tissue
damage related to freezing (e.g., see Supplementary Fig. 3).

We next investigated if TPF correlates with tumor purity, that
is, slides with higher tumor purity tend to have larger TPFs and
vice versa. We found significant positive correlations between
TPF and TCGA pathologist-reported purity (“average percentage
of tumor cells”) in the majority of cancer types (Fig. 2e), with
larger cancer sets tend to have more significant p values (e.g.,
BRCA: P= 5e-17). The distributions of TPF were systematically
higher than the pathologist annotations (Supplementary Fig. 2),
though this difference can be partially reconciled by the fact that
TPF is based on the neoplastic area while the pathologist
annotation is based on cell counts. Tumor cells are larger than
stromal cells and reduce nuclear density. While TPF and purity
are clearly related, the moderate magnitudes of correlations
indicate that intraslide improvements can be made. A notable
limitation is the training assumption that tiles in a slide are either
all tumor or all normal, as intraslide pathologist annotations are
not provided by TCGA. Additionally, pathologist assessments of
tumor purity have non-negligible variability29 that may affect
correlations. For comparison, we also calculated the correlation of
TCGA pathologist-reported purity with the genomics-inferred
purity measures ABSOLUTE30 and InfiniumPurify31 in BRCA.
The correlations of TCGA-annotated purity vs. the ABSOLUTE
and InfiniumPurify estimates were only 0.16 and 0.10, respec-
tively. These correlations were lower than our observed correla-
tion between TPF and purity (r~0.4).

Neural network classification of cancer subtypes. We also
applied our algorithm to classify tumor slides based on their
cancer subtypes (Fig. 1a). This analysis was performed on ten
tissues for which pathologist subtype annotation was available on
TCGA: sarcoma (SARC), brain (LGG), breast (BRCA), cervix
(CESC), esophagus (ESCA), kidney (KIRC/KIRP/KICH), lung
(LUAD/LUSC), stomach (STAD), uterine (UCS/UCEC), and
testis (TGCT). Cancer subtypes with at least 15 samples were
considered, based on TCGA metadata (see “Methods”). Because
comparable numbers of FFPE and flash-frozen samples are pre-
sent in TCGA cancer types (FFPE to frozen slide ratio: 1.0 ± 0.5),
both were included (Fig. 3a), and each tissue was stratified into its
available subtypes (Fig. 3b and “Methods”). We used the same
CNN model as for tumor/normal classification; however, for
cancer types with more than two subtypes, a multi-class classi-
fication was used.

Figure 3c, d shows the per-tile and per-slide classification
results (AUC ROCs alongside their micro- and macro-averages).
At the slide level, the classifiers can identify the subtypes with
good accuracy in most tissues, though generally not yet at clinical
precision (AUC micro-average: 0.87 ± 0.1; macro-average: 0.87 ±

0.09). The tissue with the highest AUC micro/macro-average was
kidney (AUC 0.98), while the lowest was a brain with micro-
average 0.60 and macro-average 0.67. All CIs were above the 0.50
null AUC expectation, and all of the AUCs were statistically
significant (5% FDR, Benjamini–Hochberg correction32). For full
CIs and P values, see Supplementary Data 1. The individual
subtype with the best AUC is the mucinous subtype for breast
cancer (adjusted P value <1e-300). The weakest P value (adjusted
P= 0.012) belongs to the oligoastrocytoma subtype of the brain.
Slide predictions are superior to those at the tile level, though
with similar trends across tissues. This indicates that tile
averaging provides substantial improvement of signal to noise,
consistent with observations for the tumor/normal analysis. In
contrast to tumor/normal classification achieving high AUC’s
across all cancer types, subtype classification AUCs are lower and
span a wider range. This suggests that subtype classification is
inherently more challenging than tumor/normal classification,
with a narrower range of image phenotypes.

The images used in the subtype analysis were from a mixture of
frozen and FFPE samples. Although FFPE samples are preferred
because they avoid distortions caused by freezing, we tested
whether the CNNs were able to classify subtypes for each sample
preparation (Supplementary Fig. 4). The CNNs classified the
FFPE and frozen samples with comparable accuracy, with the
same tumor types doing better (e.g., kidney), or worse (brain) in
each. Correlations between classification AUCs were high across
the two sample preparations (r= 0.87 for macro-averages; r=
0.78 for micro-averages). As expected, FFPE-based classifications
were generally better, notably for brain and sarcoma samples.

Cross-classifications between tumor types demonstrate con-
served spatial behaviors. We next used cross-classification to test
the hypothesis that different tumor types share CNN-detectable
morphological features distinct from those in normal tissues. For
each cancer type, we re-trained the binary CNN classifier for
tumor/normal status using all flash-frozen WSIs in the set. We
then tested the ability of each classifier to predict tumor/normal
status in the samples from each other cancer type. Figure 4 shows
a heatmap of per-slide AUC for all cross-classifications, hier-
archically clustered on the rows and columns of the matrix. A
non-clustered version is presented in Supplementary Fig. 5 with
CIs. Surprisingly, neural networks trained on any single tissue
were successful in classifying cancer vs. normal in most other
tissues (average pairwise AUCs of off-diagonal elements: 0.88 ±
0.11 across all 342 cross-classifications). This prevalence of strong
cross-classification supports the existence of morphological fea-
tures shared across cancer types but not normal tissues. In par-
ticular, classifiers trained on most cancer types successfully
predicted tumor/normal status in BLCA (AUC= 0.98 ± 0.02),
UCEC (AUC= 0.97 ± 0.03), and BRCA (AUC= 0.97 ± 0.04),
suggesting that these cancers most clearly display features uni-
versal across types. At a 5% FDR, 330 cross-classification AUCs
are significant (See Supplementary Fig. 5 for statistical details).
The AUC mean and CI lower bound are each above 80% for 300
and 164 of these cross-classifications, respectively. A few cancer
types, e.g., LIHC and PAAD, showed poor cross-classification to
other tumor types, suggesting morphology distinct from other
cancers.

To improve spatial understanding of these relationships, we
tested how well tile-level predictions are conserved between
different classifiers (Fig. 5), while also analyzing the effect of
varying the test set. For each pair of classifiers, we specified a test
set then computed the correlation coefficient of the predicted
tumor/normal state (logit of the tumor probability) across all tiles
in the test set. We repeated this calculation for each test set, which
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we indexed by tissue type (breast, bladder, etc.). Each test set
included both tumor and normal slides for the tissue type.
Figure 5a, b shows for each pair of classifiers the average and
maximum correlation coefficients, respectively, over test sets.
Many correlations are positive, with an average and standard
deviation over all pairs of classifiers of 45 ± 16% (Fig. 5a, diagonal
elements excluded), indicating cross-classifiers agree at the tile
level. These tile-level results supported the slide-level results.
Classifiers with low cross-classification slide-level AUCs, such as
LIHC, had the smallest tile-level correlations. Tile predictions also
showed similarities between classifiers derived from the same
tissue (e.g., LUAD-LUSC, KICH-KIRP-KIRC). Similarities
between classifiers became even more apparent when we focused
on the test tissue with the strongest correlation for each pair of
classifiers (Fig. 5b). These positive correlations are not simply due
to distinguishing tiles in tumor slides from tiles in normal slides.
Figure 5c, d is analogous to Fig. 5a, b, but computed only over
tumor slides. The results are nearly unchanged, indicating that
they reflect behavior within tumor images.

We hypothesized that certain tissue types might be particularly
easy to classify, and to test this we tabulated which tissue sets
yielded the maximal correlations for each pair of classifiers in
Fig. 5b (Supplementary Data 2). For each pair, we listed the three
tissue sets yielding the highest correlations. If this were random,
we would expect each tissue to appear in this list 27 times.
However, we observed extreme prevalence for BRCA (132
appearances, P= 8.5e-119), BLCA (106 appearances, P= 2.5e-
43), and UCEC (62 appearances, P= 1.9e-11). Many classifier
pairs agree better within these three tissues than they do within
their training tissues. Thus BRCA, BLCA, and UCEC are
canonical types for intraslide spatial analysis, in addition to their
high cross-classifiability at the whole-slide level (Fig. 4).

We compared the effect of minor modification to the architecture
on tumor/normal self- and cross-classifications. If we just used the

Inception v3 architecture without the additional dense layers (see
“Methods”), the results were inferior (Supplementary Fig. 6). Our
architecture (Fig. 1a) achieved a slightly higher AUC on average
(0.04 ± 0.068) compared to the original Inception V3 network
(Wilcoxon signed-rank test P value <1e-20).

Cross-classification relationships recapitulate cancer tissue
biology. To test the biological significance of cross-classification
relationships, we assessed associations between the tissue of ori-
gin22 and cross-classification clusters. Specifically, we labeled
KIRC/KIRP/KICH as pan-kidney33, UCEC/BRCA/OV as pan-
gynecological (pan-gyn)34, COAD/READ/STAD as pan-
gastrointestinal (pan-GI)35, and LUAD/LUSC as lung. The hier-
archical clustering in Fig. 4 shows that cancers of similar tissue of
origin cluster closer together. We observed that the lung set
clusters together on both axes, Pan-GI clusters on the test and
partially the train axis, and Pan-Gyn also partially clusters on the
test axis. Pan-Kidney partially clusters on both axes. To quantify
this, we tested the associations between proximity of cancers on
each axis and similarity of their phenotype (i.e., tissue of origin/
adeno-ness). Organ of origin was significantly associated with
smaller distances in the hierarchical clustering (P value= 0.002
for test axis and P= 0.009 for train axis; Gamma index permu-
tation test, see “Methods”). We also grouped cancers by adeno-
carcinoma/carcinoma status (Fig. 4, second row from top). Since
SARC does not fit either category, and ESCA contains a mixture
of both categories, these two cancers were labeled as “other”. The
inter-cancer distances were significantly associated with adeno-
ness on the train axis (P value= 0.015). We observed other
intriguing relationships among cross-tissue classifications as well.
Particularly, Pan-GI created a cluster with Pan-Gyn, supporting
these tumor types having shared features related to malignancy.
Likewise, Pan-Kidney and lung also cluster close to each other.
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Validation of cross-classification relationships using CPTAC
images. To validate the trained CNNs and their cross-
classification accuracies, we applied them to the LUAD and
LUSC slides of the Clinical Proteomic Tumor Analysis Con-
sortium (CPTAC) dataset (see “Methods”). TCGA-trained
LUAD and LUSC classifiers were highly effective on the
CPTAC LUAD and LUSC datasets (Fig. 6a, b). The TCGA-
trained LUAD and LUSC classifiers have validation AUCs of
0.97 and 0.95, respectively, on the CPTAC-LUAD dataset, and
have validation AUCs of 0.97 and 0.98, respectively, on the
CPTAC-LUSC dataset. Both of the TCGA-trained CNNs yielded
well-separated distributions of TPF between CPTAC tumor and
normal slides (Supplementary Fig. 7). CNNs trained on other
TCGA tissue types were also relatively effective on the CPTAC
sets, with average AUC of 0.75 and 0.73 when applied to the
CPTAC-LUAD and LUSC image sets, respectively. This was
lower than the performance of the TCGA-trained classifiers on
the TCGA LUAD and LUSC sets (average AUC 0.85 and 0.90,
respectively), suggesting that cross-classification is more sensitive
to batch protocol variations. However, the correlation between
AUCs on the TCGA and CPTAC sets was high (Fig. 6c, d:
LUAD: r= 0.90, LUSC: r= 0.83), indicating that relationships

between tumor types have a clear signal despite such sensitivities.
The CPTAC-LUAD and LUSC datasets were also used to train
classifiers, which were then tested on the TCGA cancer sets. We
observed high correlation between TCGA-trained and CPTAC-
trained cross-classification AUCs (Supplementary Fig. 8, LUAD:
r= 0.98, LUSC: r= 0.90).

Comparisons of neural networks for TP53 mutation classifi-
cation. To investigate how images can be used to distinguish
cancer drivers, we tested the accuracy of CNNs for classifying
TP53 mutation status in five TCGA cancer types, namely BRCA,
LUAD, STAD, COAD, and BLCA. We chose these due to their
high TP53 mutation frequency36–38, providing sufficient testing
and training sets for cross-classification analysis. Using transfer
learning, we obtained moderate to low AUCs for TP53mut/wt
classification (0.66 for BRCA, 0.64 for LUAD, 0.56 for STAD,
0.56 for COAD, and 0.61 for BLCA). Due to this weak perfor-
mance, we switched to a more computationally intensive
approach in which we fully trained all parameters of the neural
networks based on an architecture described in ref. 19 (Fig. 1b),
with undersampling to address data imbalance and a 70/30 ratio
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of slides for training and testing. Figure 7a, b shows heatmaps of
AUC for the per-tile and per-slide classification results, respec-
tively (see also Supplementary Figs. 9 and 10). Self-cohort pre-
dictions (diagonal values) have AUC values ranging from
0.65–0.80 for per-slide and 0.63–0.78 for per-tile evaluations.
Stomach adenocarcinoma (slide AUC= 0.65) was notably more
difficult to predict than lung adenocarcinoma (slide AUC= 0.80),
for which we found AUC values comparable to the AUC= 0.76
LUAD results reported by Coudray et al.19. This LUAD fully
trained network (AUC= 0.76) outperformed the transfer learn-
ing for the same data (AUC= 0.64). The CNNs achieved a higher
AUC compared with a random forest using tumor purity and
stage for TP53 mutation prediction (see Supplementary Fig. 11),
suggesting the CNNs use more sophisticated morphological fea-
tures in their predictions. We also observed that CNNs were able
to more accurately identify tumors with TP53 mutations when
the allele frequency of the mutation was higher, suggesting that
prediction is easier when the tumor is more homogeneous
(Supplementary Fig. 12). The F1 scores of the CNNs are provided
in Supplementary Fig. 13.

We also tested the ability of the TP53 CNNs to cross-predict
across cancer types. Cross-predictions yielded AUC values with a
comparable range as the self-cohort analyses (AUCs 0.62–0.72 for
slides; 0.60–0.70 for tiles), though self-cohort analyses were
slightly more accurate. These AUC values are not sufficient for
practical use, though the positive cross-classification results
suggest that it might be possible to combine datasets to increase
accuracy (see “Discussion”). Colon adenocarcinoma AUC values
tended to be low as both a test and train set, suggesting TP53
creates a different morphology in this tissue type. Overall, the
positive cross-classifiabilities support the existence of shared
TP53 morphological features across tissues. Figure 8 shows TP53
mutational heatmaps of one LUAD slide known to be mutant and
one LUAD slide known to be wild type from the sequencing data.
We compared the LUAD- and BRCA-trained deep learning
models on these slides, as those two models provided the highest
AUC values in our cross-classification experiments. Prediction
maps for tumor/normal status (second row) and TP53 mutational
status (third row) are shown for both samples. Both tumor/
normal models correctly predicted the majority of tiles in each
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Fig. 5 Tile-level cross-classifications as a function of test set. Correlations of predicted tumor/normal status (i.e., logit of tumor probability) between
pairs of classifiers, specified on the x and y axis. Correlations are first calculated using the tile values for all slides of a given test tissue. a Average
correlation across tissues, using both tumor and normal slides in the tissue test sets. b Correlation for the tissue set with the maximal correlation, using
both tumor and normal slides in the tissue test sets. c Average correlation across tissues, using only tumor slides in the tissue test sets. d Correlation for
the tissue set with the maximal correlation, using only tumor slides in the tissue test sets.
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sample as cancer. Analogously, the BRCA-trained TP53 mutation
status model predicts patterns similar to the LUAD-trained
model. Importantly, the tumor/normal and TP53mut/wt classi-
fiers highlight different regions, indicating these classifiers are
utilizing distinct spatial features. A caveat to these analyses,

however, is that the spatial variation within heatmaps may reflect
TP53mut-associated microenvironmental features rather than
genetic variation among cancer cells.

We next performed a tile-level cross-classification analysis as a
function of test set. For most test cancer types, we observed little
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correlation when comparing networks trained on cancers “A” and
“B” applied to test cancer “C”. Therefore, we focused on cases
where C is the same as B. Figure 9 plots the correlations of TP53
mutation probability logits across cancer pairs, where each row
denotes the cancer type the first CNN is trained on, and each

column is both the test tissue and the second CNN training tissue.
In these cases, the correlation coefficients were generally positive
and met statistical significance though with moderate magnitude.
All correlations were significant, except for the BRCA TP53
classifier applied to LUAD tumors (t test on Fisher z-transformed
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Fig. 8 TP53 genotype heatmaps based on predicted probabilities using our deep learning model. The first row shows two LUAD H&E slides with TP53
mutant (left panel) and wild type (right panel). The second row shows prediction maps for these two slides using tumor/normal classifiers trained on BRCA
and LUAD samples. Both models successfully classify samples as cancer and predict similar heatmaps. The third row shows prediction maps for these
slides using TP53 mutation classifiers trained on BRCA and LUAD. The BRCA-trained and LUAD-trained heatmaps are similar, suggesting that there are
spatial features for TP53 mutation that are robust across tumor types.
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correlation coefficients, FDR 5%). Notably, classifiers based on
LUAD, BRCA, and COAD worked well on BLCA, BLCA, and
COAD tumors, respectively. BLCA and LUAD are the two test
cancers with the largest correlations (column average). LUAD
and COAD are the two training cancers with the largest
correlations (row average). The high row and column averages
for LUAD indicate it is canonical both as a test and a training set.
Interestingly, the correlations of Fig. 9 are not symmetric. For
example, the network trained on LUAD achieves a correlation of
0.34 on BLCA, while the network trained on BLCA has a
correlation of 0.04 when tested on LUAD.

Features impacting tumor purity prediction. TCGA provides
annotations only at the whole-slide level, limiting our ability to
build classifiers that resolve predictive features. To better inves-
tigate features, we obtained datasets with higher resolution
annotations, i.e., BreCaHAD39 which provides nucleus-level
tumor/normal annotations of 162 breast cancer ROIs (see the
methods section for details), and 8 colorectal ROIs hand-
annotated at nuclear resolution (>18,000 cells) by our group.
These annotations provide the ground truth tumor purity (the
fraction of tumor cells, aka cellular malignancy) used for the
analysis. We then analyzed these data at the tile level (512 × 512
pixels). We trained CNNs vs. the ground truth purity values for
each tile, randomly splitting the BreCaHAD dataset into 150 train
and 12 test ROIs (a total of >23,000 cells) and using the colorectal
set for validation. Purities of the colorectal tiles are spread over a
wide range (mean 58%, standard deviation 19.2%), while Bre-
CaHAD purities are higher (mean 87% in the training set), as
detailed in Supplementary Fig. 14. These CNNs yielded a mean
absolute error of 14% and 15% for the test breast and colorectal
sets, respectively. Root mean squared error (RMSE) values were
8% and 20%, respectively. The average prediction for the color-
ectal datasets (69%) was intermediate between the true colorectal
mean (58%) and the breast mean (87%), suggesting that, although
the CNN was trained only on breast data, the CNN was able to
learn some features common between breast and colorectal
tumors. As a comparison, we also calculated RMSEs between
purity and TPF as predicted by the TCGA-trained BRCA and
COAD classifiers on the colorectal set. These RMSEs were 45%
and 39%, respectively. These values were inferior to the
BreCaHAD-trained CNNs, indicating that nuclear annotations
provide additional predictive information beyond the overall
slide label.

We further tested whether purity was being predicted from
only the image regions containing individual nuclei, or whether
intercellular information was being used. For this, we made use of
a CNN classifier40 that predicts tumor/normal status from
individual nucleus images (see “Methods”). We trained on the
breast nuclei, and this was able to predict tumor status of reserved
breast nuclei images with high accuracy (AUC 93–98%) However,
the breast-trained CNN yielded poor predictions on the colorectal
nuclei (AUC 56%). We tested whether adding up the contribu-
tions of nuclei within each ROI would lead to good predictions at
the ROI level. However, the average RMSE across colorectal ROIs
was 25%, higher than the RMSE from the tile-based analysis
(20%) of the same data. This suggests that, although the tile-based
approach is not aware of individual cells, it compensates by using
intercellular regions of images.

Discussion
In this paper, we have presented a versatile CNN-based frame-
work for the pan-cancer analysis of histology images. Using this
framework, we were able to train extremely accurate slide-based
tumor/normal classifiers in nearly all cancer types, and we also

were able to classify subtypes and TP53 mutation status with
significant though less extreme accuracy. Critically, these pan-
cancer studies enabled us to compare classifier outputs as a
function of training tissue, test tissue, and neural network
architecture. Cross-classification for tumor/normal status was
successful across most tissues, despite the variations in native
tissue morphology and fat content. These studies showed that
tumor images have a robust intraslide structure that can be
consistently identified across CNN classifiers. Our findings can be
viewed within three prongs: identification of pan-cancer mor-
phological similarities, transfer learning as a common feature
extractor, and interpreting spatial structures with tumors.

Identifying pan-cancer morphological similarities. While other
recent works have investigated image-based cancer classification41,42,
cross-classification has until now been little studied. Comparisons of
classifiers support the existence of morphological features shared
across cancer types, as many cross-cancer predictors achieve high
AUCs. While such results are subject to the limitations of the data
used, TCGA is one of the largest available sets, and we were able to
validate the effectiveness of TCGA-trained classifiers on independent
CPTAC lung cancer sets as well. Thus constraints of the TCGA data,
such as a lack of FFPE non-tumor images and variable sample
quality, do not preclude the development of effective classifiers,
though new algorithmic concepts will be essential for individual
image analysis questions just as they have been for realizing the
value of TCGA sequence data, e.g. refs. 43,44. Specific cross-
classification relationships between types are also informative.
Cancers from a common tissue, such as (KIRC, KIRP, KICH),
(LUAD, LUAC), and pan-GI cancers are good predictors of each
other, and there are also significant similarities within adenocarci-
nomas and carcinomas, respectively. These findings further
demonstrate that cancer tissue of origin and glandular derivation are
reflected in image-based cross-classification results. Remarkably,
BRCA, BLCA, and UCEC are unexpectedly easy to classify as test
sets, showing strong cross-classifiability both at the WSI and tile
levels. Further studies are likely to benefit from focusing on these as
canonical image types for analysis and method development.
Interestingly, this behavior is not symmetric between train and test
cancer types. For example, while the network trained on KIRC
achieves an AUC> 90% when tested on BLCA, training on BLCA
and testing on KIRC results in an AUC< 65%. Overall, the high
levels of cross-classifiability suggest that it will be possible to com-
bine images from multiple cancer types to extend and refine training
sets. Investigations into the optimal combinations of sets (both
positive and negative) may be useful for improving a variety of
classification tasks.

A next challenge is to better define the morphological features
that underlie cross-classifiability and evaluate their biological
relevance. One approach would be to select classifiers with highly
similar outputs and then overlap their spatial salience maps45,46.
Another approach would be to assess if shared morphological
features are predictive of shared genomic markers, e.g., via
nonlinear canonical correlation analysis (see ref. 47 and 48 for
examples). For these types of image morphology questions,
careful selection of cancer test sets will be critical. For example,
for the TP53 mutation studies we had enough data to identify
significant cross-correlations and spatial structures within
images, but such analysis will be more challenging for rarer
drivers.

Transfer learning as a common feature extractor. Transfer
learning-based methods take advantage of a universal set of
pretrained layers based on non-histological image collections
to decompose images into features, an aspect which reduces
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computational costs but can potentially limit classification accu-
racy. While we have observed that transfer-learning networks
excel at tumor/normal classification, they have lower accuracy for
cancer subtype and TP53 mutation status predictions. This may
be because the features associated with subtype and mutation
status are not well-represented in the non-histological image
collections. For example, Yu et al.49 reported that TP53 mutation
status is associated with the pixel intensity distribution in the
cytoplasm and specific texture features within tumor nuclei, and
it is possible that such textures are not in ImageNet while tumor/
normal classification may be more related to cell shape and size,
which are simpler variables more likely to have analogs within
ImageNet. We found that fully trained models, which learn all
network parameters directly from the cancer images and are
computationally more demanding, yielded higher AUCs. Thus
the suitability of transfer learning is task-specific, though deter-
mining which tasks are suitable is an open challenge. That being
said, the ability of transfer-learning-based models to classify
tumors remains noteworthy. Even though the Inception network
never used pathology images in pre-training, the large set of
image-net pre-training images across diverse object classes still
led to pretrained feature representations encoding information
salient across cancer types. Further incorporation of histopatho-
logical sets during pre-training may improve the resolution of
classes with more subtle differences, such as those that differ by
single mutations, and this will be an important topic for future
study. Continued development of transfer-learning methods for
biomedical image analysis Raghu et al.50 and investigations into
the general ability of effective representations to encode infor-
mation for various tasks, as has been discussed in detail by Bengio
et al.51, will both be pertinent.

The effectiveness of CNN architectures can also be impacted by
other issues. As the feature representation of the CNNs using
transfer learning is optimized for the ImageNet dataset, additional
dense layers are necessary when analyzing H&E slides. Although
we found that the architecture in Fig. 1a achieves slightly higher
AUCs than the original inception architecture without dense
layers, the optimal architecture of the dense layers is an open
research question. A second issue is class imbalances in the
histopathology samples, which can be further exacerbated by
intratumoral heterogeneity. For example, we train CNNs by
associating all tiles within a slide with the same label, even though
tumor slides will contain some regions that are non-tumor. Our
approaches still work because classifiers can tolerate some error in
the training data52. In the machine learning literature, this
corresponds to the general problem of multi-label, multi-instance
supervised learning with imbalanced data, an active area of
research including for medical image data28,53–55.

Interpreting spatial structures within tumors. Self- and cross-
comparisons of classifiers can highlight robust spatial structures
within tumor images (e.g., Fig. 8), but interpretation remains a
major challenge. Neural networks provide only indirect infor-
mation about the features responsible for such structures, and
expert manual pathological analysis of such cases will be essential.
Manual analyses may also clarify the identity of predictive fea-
tures whose existence is supported by CNNs. For example, our
comparison of tile and nucleus-level approaches indicated that
intercellular regions are useful in predicting tumor purity, but it is
uncertain what specific features mediate this relationship. It is
worth noting that such analyses would not be possible without
mixtures of tumor and normal regions together within images.
Thus it will be important to analyze regions with spatial
diversity rather than only regions of high purity, which has been
the focus of some recent works41. Finally, to improve tile-level

understanding using these approaches, further fine-grained
pathological annotations with concomitant hypothesis develop-
ment from the community are vital, e.g., through extended
curation of TCGA and other sets. Prior single histology studies
have distinguished spatially important regions by training on
detailed annotations from pathologists56, and expansion across
histologies would enable further understanding through cross-
comparisons of classifiers. Such comparisons of genetically and
phenotypically diverse tissues will be a potent approach to reveal
morphological structures underlying cancer biology.

Methods
Transfer learning
Sample selection for tumor/normal classification. Since there are very few normal
FFPE WSIs on TCGA, we only considered flash-frozen samples (with barcodes
ending with BS, MS, or TS). We selected 19 TCGA cancer types that had at least 25
normal samples. Here we use cancer abbreviations from TCGA as available at
https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-
abbreviations.

In total, 24% of the frozen slides are labeled normal (non-tumor) and the
remaining are tumors. For each tumor type, the annotated purity values (TCGA
“average percentage of tumor cells”) span a broad range of values (Supplementary
Fig. 2). The samples were randomly divided into 70% training and 30% testing.
Stratified sampling was used to balance the ratio of positives and negatives into
train and test sets. Here, the term “normal” is used to refer to the adjacent normal
slides of a tumor. These slides do not always represent the truly normal tissue, and
a more appropriate term might be “non-tumor”. Here, we use the “normal” label
for convenience, and to remind that the slides are the adjacent normal cuts.

Sample selection for histopathological subtype classification. WSI images from ten
tissue types were used for subtype classification. FFPE and flash-frozen samples are
approximately balanced among the tumor WSIs; hence we used both for subtype
classification. The samples were randomly divided into 70% training and 30%
testing. Some cancer tissues had subtypes that were available as individual sets
within TCGA. These three tissues were LUAD/LUSC (lung); KICH/KIRC/KIRP
(kidney); and UCS/UCEC (uterine). For all other tissues, TCGA provided single
sets that spanned multiple histopathological subtypes designated by pathologist
annotations. This information was available in the TCGA website as “clinical”
supplementary files (with filenames formatted as “nationwidechildrens.org_clini-
cal_patient_{CANCERTYPE}.txt)”. Only histopathological subtype annotations
with at least 15 samples were considered. Samples with ambiguous or unin-
formative annotations were not included.

The following subtypes were used for cancer subtype classification: brain
(oligoastrocytoma, oligodendroglioma, astrocytoma), breast (mucinous, mixed,
lobular, ductal), cervix (adenocarcinoma, squamous cell carcinoma), esophagus
(adenocarcinoma, squamous cell carcinoma), kidney (chromophobe, clear cell,
papillary), lung (adenocarcinoma, squamous cell carcinoma), sarcoma (MFS:
myxofibrosarcoma, UPS: undifferentiated pleomorphic sarcoma, DDLS:
dedifferentiated liposarcoma, LMS: leiomyosarcomas), stomach (diffuse, intestinal),
testis (non-seminoma, seminoma), thyroid (tall, follicular, classical), uterine
(carcinoma, carcinosarcoma). Note that the subtype analysis requires only tumor
tissue, so it includes some cancers that were not included in the tumor/normal
analysis due to minimum data requirements on the normal samples.

CNN architecture and training. We used a Google Inception v3-based architecture
for pan-cancer tumor/normal classification of TCGA H&E slides. Our CNN
architecture uses transfer learning on the Inception module with a modified last
layer to perform the classification task. For predicting mutational status, we utilize
the same architecture as in Coudray et al.19 and fully trained the model on
TCGA WSIs.

The output of the last fully connected layer of Inception v3 (with 2048 neurons)
was fed into a fully connected layer with 1024 neurons. The output was encoded as
a one-hot-encoded vector. A softmax function was utilized to generate class
probabilities. Each training simulation was run for 2000 steps in batches of
512 samples, with 20% dropout. Mini-batch gradient descent was performed using
Adam optimizer57. To mitigate the effects of label imbalance in tumor/normal
classification, undersampling was performed during training by rejecting inputs
from the larger class according to class imbalances, such that, on average, the CNN
receives an equal number of tumor and normal tiles as input. Per-tile classification
ROCs were calculated based on thresholding softmax probabilities. To compute
per-slide classification ROCs, each tile is associated with the class having the
highest softmax probability. Then the fraction of tiles labeled as tumor, i.e., TPF
(tumor-predicted fraction), is used to distinguish classes at the slide level. Due to
significant additional compute costs, we did not optimize on hyperparameters, e.g.,
number of epochs or learning rate, instead of using common values for similar
image classification problems. Details are in the Github code repository.

Preprocessing and transfer-learning steps:
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1. Aperio SVS files from primary solid tumors or solid tissue normal samples
with ×20 or ×40 magnification were selected.

2. Each SVS file was randomly assigned to train or test set.
3. ×40 images were resized to ×20.
4. The background was removed as in ref. 19. This step removes regions

without tissue and also limits regions with excess fat.
5. Images were tiled into non-overlapping patches of 512 × 512 pixels.
6. Tiles were used as inputs of the Inception v3 network (pretrained on

ImageNet; downloaded from http://download.tensorflow.org/models/image/
imagenet/inception-2015-12-05.tgz), in a forward pass and the values of last
fully connected layer (“pool_3/_reshape:0”) were stored as “caches” (vectors
of 2048 floating-point values).

7. Caches from the same holdout group were shuffled and assigned to
TFRecords in groups of 10,000. The TFRecord file format is a simple format
for storing a sequence of binary records. TFRecord is TensorFlow’s native
storage format and enables high data throughput that results in a more
efficient model training pipeline.

8. TFRecords were then used as input to the transfer-learning layers.

Programming details. All analysis was performed in Python. Neural network codes
were written in TensorFlow58. Images were analyzed using OpenSlide59. Classifi-
cation metrics were calculated using Scikit-learn60. All transfer-learning analyses
including preprocessing were performed on the Google Cloud Platform (GCP).
The following GCP services were used in our analysis: Kubernetes, Datastore,
Cloud Storage, and Pub/Sub. During the preprocessing steps, we used up to 1000
compute instances (each 8 vCPUs and 52GB memory) and up to 4000 Kubernetes
pods. Cloud Storage was used as a shared storage system, while Pub/Sub asyn-
chronous messaging service in conjunction with Datastore was used for task dis-
tribution and job monitoring of the Kubernetes cluster. This architecture ensures
scalability and a fault-tolerant process. We leveraged a similar architecture for the
pan-cancer training/testing process.

External validation using CPTAC images. The LUAD and LUSC slides of the
CPTAC project were obtained through The Cancer Imaging Archive (TCIA)
portal. CPTAC denotes lung squamous cell carcinoma by TSCC while TCGA uses
LUSC. Here, the term LUSC is used throughout for consistency. Four CPTAC
slides in common with TCGA were removed. Slides were tiled and pre-processed
similar to the TCGA data, and those with less than 50 tiles were removed. The
tumor-normal classifiers were trained on the TCGA data for validation using the
hyperparameters described in the “CNN architecture and training” section. The
external validation was performed on 1055 CPTAC LUAD (377 normal, 678
tumor) and 1060 CPTAC-LUSC (372 normal, 688 tumor) WSIs.

Mutational classification
Sample selection for mutational classification. We selected flash-frozen WSIs of
BRCA, LUAD, and STAD cancer types. Impactful TP53 mutations were deter-
mined using masked somatic mutations maf files called by MuTect261. We first
considered all called mutations categorized as MODERATE/HIGH (by VEP soft-
ware62) in the IMPACT column. If the gene had at least one such mutation in the
sample, it was counted as mutated and was considered as wild type otherwise.
Table 1 shows the number of wild-type and mutated slides in each cancer type. For
cross-classification, the model was trained on the entire training set and predictions
were made on the entire test set.

CNN architecture and training. We utilized the Inception v3 architecture19 to
predict TP53-associated mutations in BRCA, LUAD, and STAD sets. Unlike the
tumor/normal analysis, transfer learning was not used for mutational classifiers.
Instead, models were fully trained on input slides. As a preprocessing step, we used
a fully trained normal/tumor classifier to identify and exclude normal tiles within
each tumor slide. This filtering step ensures that tiles with positive mutation class
label are also labeled as tumor. To predict mutations in the TP53 gene, we trained
two-way classifiers, assigning 70% of the images in each tissue to training and the
remaining 30% to the test set. The cross-tissue mutational classification was per-
formed by training the model on the entire train set of a cancer type and per-
forming prediction on other cancer types. The model outputs for tiles were used to
produce slide-level prediction by averaging probabilities. Similar downsampling as
in the tumor/normal classifier was performed to handle data imbalance issues.

Computational configuration. All of the computational tasks for mutation predic-
tion were performed on linux High performance computing clusters with the
following specification: 8 CPUs, RAM: 64 GB, and Tesla V100 GPUs, 256 GB
RAM. Furthermore, The GPU-supported TensorFlow needed CUDA 8.0 Toolkit
and cuDNN v5.1. All GPU settings and details were obtained from TensorFlow and
TF-slim documentations and NVIDIA GPUs support.

Cross-classification statistics. Hierarchical clustering was applied to cross-
classification per-slide AUC values using UPGMA with Euclidean distance. To
determine the association between clustering and independent phenotypic labels
(i.e., organ and adeno-ness), we used Gamma index of spatial autocorrelation from
the Python package PySal63. Gamma index is defined as64:

Γ ¼
X

i;j

Ai;jWi;j; ð1Þ

where A is the feature matrix and W is the weight matrix, and indices range over
cancer types. For each axis and each phenotype group (i.e., organ or adeno-ness),
we calculate a separate Gamma index. We define Ai;j ¼ 1, if cancer types i and j
have the same phenotype (e.g both are adenocarcinoma) and Ai;j ¼ 0 otherwise.
For weights, we set Wi;j ¼ 1 if cancer types i and j are immediately clustered next
to each other andWi;j ¼ 0 otherwise. P values are then calculated by a permutation
test using the PySal package. We dropped any cancer type with “Other” phenotype
from this analysis. To avoid extensive computation cost for computing CIs, we
used the method of Reiser65 to compute CIs instead of generating bootstrap sub-
samples. A similar procedure is used to compute the CIs of tumor/normal and
cancer subtype classifiers. In order to compute tile-level correlations, we first
compute tumor probability logit for each tile, defined as log((p+ ε)/(1−p+ ε)),
where P is tumor probability and ε= 0.0001 is added to avoid dividing by or taking
the logarithm of zero.

Patient-level stratification. We considered two ways of splitting data by patient for
the analysis of Supplementary Fig. 1. (1) First, we considered two patient groups—
those with adjacent normals and those without. For each cancer type, 70% of
patients in each group were randomly assigned for training, and the remaining 30%
were used for testing. Slides corresponding to each patient, whether in train or test,
were placed in their associated class, i.e., normal or tumor. This data split was
denoted by the “patient level” stratification. (2) Alternatively, we restricted analysis
to patients who only have adjacent normal and used the 70/30 split of patients.
This split was denoted by “matched patient level” stratification.

Purity estimation for BreCaHAD and colorectal nuclear annotations
BreCaHAD dataset. The images of this dataset are based on archived surgical
pathology example cases used for teaching purposes39. “All specimens were breast
tissue fixed in 10% neutral buffered formalin (pH 7.4) for 12 h, processed in graded
ethanol/xylene to Surgiplast paraffin. All sections were cut at 4-micron thickness,
deparaffinized and stained with Harris’ hematoxylin and 1% eosin as per standard
procedures”39. This dataset contains 162 ROIs, where each ROI is 1360-by-1204
pixels and is obtained at the ×40 magnification. The data is saved using the
uncompressed “.TIFF” format.

Tile-based purity estimation. We used Inception, DenseNet, and Xception-based
transfer-learning models, each trained for 20 epochs, where the network at the
epoch >10 performing best on test data and having test mean squared error larger
than the train set is used for validation. Tiles of size 128 × 128 resulted in large test
errors, and the ROIs were too small for 1024 × 1024 tiles. We, therefore, focused on
tiles of sizes 512 and 256, and tiles of size 512 for validation. For cases with reduced
magnification, we downsampled 512-by-512 tiles by a factor of two. To correct for
acquisition differences between breast and colon cancer ROIs, we equalized the tile
histogram distribution. For each tile, purity is defined as the ratio of tumor cells to
total cells. We slightly adjusted to avoid purities too close to zero or one, as these
may destabilize the analysis, i.e., given a tile with purity value P, we compute logit
purity as log((P+ 0.05)/(1.05−P)), then invert the logit to obtain adjusted purity
values. We used overlapping tiles with step size 64 pixels for both tile sizes. Given
the extracted features, we used a fully connected layer of 256 neurons with ReLU
non-linearity, followed by a dropout of 25%, and a fully connected neuron using
the sigmoid activation. We used the “he_normal” initialization method of Keras
described in He et al.66, and an elastic net regularization setting L1 and L2 penalties

Table 1 Numbers of wild-type and mutated slides in each TP53 cancer set.

Cancer type No. of wild-type slides No. of mutated slides No. of train slides No. of train tiles No. of test slides No. of test tiles

BRCA 647 338 699 438,813 286 198,580
LUAD 295 270 396 452,419 169 193,245
STAD 237 200 306 428,872 131 176,059
BLCA 217 194 276 125,003 112 60,061
COAD 184 214 283 150,881 115 60,312
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to 1e-4 (the penalty value performing best on the test set compared with two other
penalties: 1e-3 and 1e-5).

Nucleus-based purity estimation. We implemented the network of Hlavcheva
et al.40, including their reported hyperparameters. The goal of this method is to
classify individual nuclei as tumor or normal. Nucleus patches were resized to
32-by-32 pixels. To adjust for acquisition differences between the breast and
colon datasets, we applied histogram equalization to both datasets. We trained
on the BreCaHAD training set and tested on the reserved breast data across all
individual nuclei, finding high accuracy (AUC 93–96%). For comparison, we
also tested a transfer-learning approach. The transfer-learning pipeline used
similar preprocessing, except nucleus patches were resized to 128-by-128 pixels
since Inception requires images to be larger than 75-by-75 pixels. The fully
trained method was superior to transfer learning (all transfer-learning AUCs
<65%, over various parameter choices). Therefore for analysis of the colon
cancer dataset, we used the Hlavcheva et al fully trained method, trained on the
entire BreCaHAD dataset. For predictions of TPF on ROIs, we compared the
sum of predicted tumor probabilities across all nuclei to the pathologist purity
annotations of all cells in the ROI.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The TCGA data can be downloaded from genomic data commons at https://portal.gdc.
cancer.gov/. The CPTAC data can be downloaded from the cancer imaging archive at
https://www.cancerimagingarchive.net/. The BreCaHAD dataset can be downloaded
from https://figshare.com/articles/
BreCaHAD_A_Dataset_for_Breast_Cancer_Histopathological_Annotation_and_Diag-
nosis/7379186. Additional data used in the study can be found at the github page https://
github.com/javadnoorb/HistCNN.

Code availability
Code used in this analysis can be found on the GitHub page: https://github.com/
javadnoorb/HistCNN. A variety of public datasets have been used as the basis for these
studies. Details for their access can be found in ”Methods”, with additional information
on the GitHub page.
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