Fig. 5: Oxidative stress levels in vitro and in vivo before and after treatment of clusterzymes.

a HT22 cell viability of clusterzymes (n = 5 per group, data are presented as mean ± SD). b HT22 cell viability in the presence of H2O2 with or without treatment of clusterzymes as determined by MTT assays (n = 6 per group, data are presented as mean ± SD). Fluorescence quantification of cell staining for c, e •OH and d, f O2•− by flow cytometry (n = 3 per group). Data are presented as mean ± SD and compared with the Con and H2O2 groups, analyzed by one-way ANOVA with two-sided LSD test (adjusted p values are shown). Fluorescence microscopic images of intracellular g •OH (green) and h O2•– (red) levels induced by 100 μM H2O2 with or without clusterzymes treatment, stained by HPF and DHE probes, respectively. It can be seen that Au24Cu1 has a better scavenging ability for •OH and Au24Cd1 shows better specificity for O2•−, suggesting their individual selectivity for •OH and O2•− respectively. i–l Indicators for oxidative stress, including SOD, GSH/GSSG, MDA, and H2O2, of TBI mice with or without treatment of clusterzymes 1, 3, and 7 days post injury (n = 5 per group). Data are presented as mean ± SEM and compared with the Sham and TBI groups, analyzed by one-way ANOVA with two-sided LSD test (adjusted p values are shown). Experiments were repeated independently g, h three times with similar results.