Fig. 1: Illustration of the projected impact on RR-TB of an M72-like vaccine. | Nature Communications

Fig. 1: Illustration of the projected impact on RR-TB of an M72-like vaccine.

From: Modelling the global burden of drug-resistant tuberculosis avertable by a post-exposure vaccine

Fig. 1

n = 200 posterior samples. Median (solid and dashed lines) and 95% Bayesian credible intervals (CrIs) of rifampicin-resistant tuberculosis (RR-TB) incidence rates over 2019–2035 are presented. For clarity, uncertainty regions with CrIs are only shown for the vaccine (not comparator) scenarios. These projections correspond to a post-exposure vaccine that reduces the risk of reactivation of latent TB infection by 50%, and that is implemented through routine vaccination and catch-up campaign amongst those over 15-years old. The figure shows projections for the countries with the highest absolute burden of RR-TB from each of the country categories listed in Table 1. Blue dashed curves illustrate a ‘status quo’ baseline, assuming no vaccine implementation and no change in the management of RR-TB. Blue solid curves show the impact of vaccination. Red curves show corresponding dynamics, under an alternative ‘improved RR-TB management’ baseline where the detection of RR-TB at the point of TB diagnosis is increased to 85%, and second-line treatment success is increased to 75%, in countries that have not yet achieved these targets. The Russian Federation in particular shows a lower impact of improved RR-TB management than other countries, owing to its already-higher coverage of drug susceptibility tests (Supplementary Fig. 10). Although the 95% CrIs for these projected dynamics with vaccination overlap in these regions, the overall incidence reductions are significant, in the sense of having uncertainty intervals that are strictly positive (Table 2, Supplementary Fig. 9).

Back to article page