Fig. 3: Adsorbed albumin increases macrophage uptake of all three PS surface chemistries but only significantly changes the zeta potential for Phos PS. | Nature Communications

Fig. 3: Adsorbed albumin increases macrophage uptake of all three PS surface chemistries but only significantly changes the zeta potential for Phos PS.

From: Surface chemistry-mediated modulation of adsorbed albumin folding state specifies nanocarrier clearance by distinct macrophage subsets

Fig. 3

a PS–BSA complexes formed after polymersome (PS) incubation with bovine serum albumin (BSA; 0.1, 1.0, or 10.0 mg/mL). b Pfam domain annotations and Columbic electrostatic surface mapped to the BSA crystal structure (PDB: 4F5S). c Albumin adsorption concentration dependence (2.5 mg/mL PS; x-axis: input BSA concentration). Significance was determined by ANOVA with post hoc Tukey. d Zeta potential (mV) of PS and PS–BSA complexes. The mean ± s.d. is displayed from three parallel experiments (n = 3). e PS zeta potential as a function of adsorbed albumin. Non-linear fits (dashed lines) for one-phase association (Phos, MeO) and exponential decay (OH) models. fh Flow cytometric analysis of PS–BSA uptake by RAW 264.7 macrophages in serum-free media (2 h, 37 °C). PS encapsulated Dex70 kDa-TMR to quantify vesicle uptake. f Illustration. g %PS+ cells (1.1% false positive rate). h Median fluorescence intensity (MFI). Error bars represent s.e.m. from three biological replicates (n = 3) unless indicated otherwise. Significant differences (PS versus PS–BSA) were determined by ANOVA with post hoc Dunnett’s test. Statistical tests used a 5% significance level. *p < 0.05, **p < 0.005, ***p < 0.0005, ****p < 0.0001.

Back to article page