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multiSLIDE is a web server for exploring connected
elements of biological pathways in multi-omics
data
Soumita Ghosh 1, Abhik Datta 2,3 & Hyungwon Choi 1✉

Quantitative multi-omics data are difficult to interpret and visualize due to large volume of

data, complexity among data features, and heterogeneity of information represented by

different omics platforms. Here, we present multiSLIDE, a web-based interactive tool for the

simultaneous visualization of interconnected molecular features in heatmaps of multi-omics

data sets. multiSLIDE visualizes biologically connected molecular features by keyword search

of pathways or genes, offering convenient functionalities to query, rearrange, filter, and

cluster data on a web browser in real time. Various querying mechanisms make it adaptable

to diverse omics types, and visualizations are customizable. We demonstrate the versatility

of multiSLIDE through three examples, showcasing its applicability to a wide range of multi-

omics data sets, by allowing users to visualize established links between molecules from

different omics data, as well as incorporate custom inter-molecular relationship information

into the visualization. Online and stand-alone versions of multiSLIDE are available at https://

github.com/soumitag/multiSLIDE.
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The innovations of omics technologies such as massively
parallel sequencing and mass spectrometry have made
multi-omics analysis a routine practice in cell biology

studies and in clinical applications1. However, multi-omics data
sets are challenging to analyze not only because of the expanding
dimensionality of data, but also because of the complexity that
comes from the interconnected nature of multiple high-
dimensional data sets. In traditional omics data analysis work-
flow, the data analysis often depended on considerable reduction
of data using statistical filters or abstraction via projection into a
low-dimensional space for visualization and interpretation.
Although data reduction is unavoidable for effective presentation
of the high-dimensional data, the dependence on reduction and
abstraction inevitably causes scientists to miss meaningful frac-
tion of data features that fail to pass such filters. Therefore, there
is a need to enable holistic exploration of unfiltered data prior to
any statistical analysis. Easy-to-use, interactive visualization tools
play an essential part in facilitating the unbiased exploration.

There are a handful of bioinformatics tools for multi-omics
data visualization in the current literature. Open-source, data-
rich web resources such as cBioPortal2, UCSC Xena3, and
LinkedOmics4 provide web-interfaces for query-based explora-
tion and visualization of oncogenes from fixed data sources such
as large-scale cancer cohorts of TCGA5 and METABRIC6.
Pathway-based visualizations, such as PaintOmics37, Escher8,
PathVisio39, and network-based visualizations such as
Cytoscape10, 3Omics11, and MONGKIE12, are popular options
for summarizing the complex interconnections and dynamics
between biomolecules in a single snapshot. These methods are
focused on either displaying quantitative values for a small
number of select markers or visualizing overall trends at an
abstract level such as pathways or networks.

Few existing tools directly visualize the quantitative data across
all omics modalities in an intuitive manner and at a legible
scale13. The ability to inspect the trends of individual molecular
features at multiple molecular levels at once is critical for holistic
understanding of multi-omics data sets, especially when mole-
cular changes are discordant between different molecular levels.
In large-scale multi-omics studies, we often find that the biolo-
gical samples with the same phenotype can have large variations
in their molecular profile between different omics modalities.
These intra-sample variations should be accounted for before
drawing biological inference from statistical models for multi-
omics data14–18.

To fill this gap, we have developed multiSLIDE, an interactive
heatmap visualization tool for easy exploration of multi-omics
data. Through multiSLIDE, we provide an interactive web
browser interface to explore unfiltered and filtered multi-omics
data through keyword-based queries. Quantitative molecular data
are best represented using heatmaps19,20, and multiSLIDE
visualizes the queried fraction of the multi-omics data sets in
separate heatmaps in one screen, with all panels synchronized
with one another and with lines connecting related measurements
to highlight the interconnectivity. In summary, the tool visualizes
quantitative multi-omics data, narrowed down to a reasonable
scale by keyword searches according to the user’s hypothesis.

We demonstrate the visualization functionalities using three
example studies with multi-omics data sets. The first dataset
comes from a study profiling the time course mRNA and protein
expression in HeLa cells undergoing unfolded protein response
(UPR) in the endoplasmic reticulum (ER)21. The second data set
presents connected visualization of phosphoproteome and pro-
teome data, hierarchically linking phosphorylation sites (phos-
phosites) to the abundance data of their parent proteins, or
linking kinase protein abundance with the phosphorylation sites
on substrate proteins22. In the last example, we visualize the

measurements of circulating microRNAs and proteins in human
plasma samples of obese insulin resistant (IR) subjects and lean
insulin sensitive (IS) subjects, connecting 3′ UTR sequence scan-
based map of microRNAs and proteins of their target genes23. In
combination, these examples demonstrate the versatility of mul-
tiSLIDE for visualizing key segments of multi-omics data through
keyword searches and user-specified options.

Results
Functionalities of multiSLIDE web server. multiSLIDE visua-
lizes the quantitative data for molecules relevant to the keywords
through heatmaps, with molecular relationship or interactions
indicated by lines connecting between omics modalities. Key-
words can be pathways, Gene Ontology (GO) terms, and gene
identifiers, e.g., immune response, insulin signaling, or AKT1.
Given keywords, multiSLIDE retrieves all matching pathways,
gene ontologies, and genes (or other individual molecules), and
the user selects search results that are of interest to them. mul-
tiSLIDE visualizes the quantitative data for the retrieved mole-
cules as heatmaps, simultaneously for all input omics platforms.
Users can apply additional statistical filtering on the retrieved
data to narrow down to differentially expressed molecules
between phenotypic groups using built-in parametric and non-
parametric statistical tests. To control false discovery rate (FDR),
multiSLIDE offers the Benjamini–Hochberg procedure24. In the
procedure, we remark that the background list (all hypotheses)
consists of the molecules selected by the user for visualization in
the given instance of multiSLIDE query, not all molecules in the
entire dataset. multiSLIDE also offers two distinct modes of data
clustering, namely synchronized and independent modes. The
synchronized mode rearranges the queried molecules in indivi-
dual heatmaps based on the clustering of one omics data (anchor
data), while the independent mode clusters each omics data
separately.

For some omics modalities, it is possible to summarize the data
at whole gene level. For instance, when visualizing transcriptome
and proteome, both datasets have measurements at the gene
level. In such cases, a linker can synchronize the relationship
between the heatmaps, resulting in an one-to-one mapping
between molecules. In this instance, a linker is simply a molecular
identifier that is common between datasets. In the absence
of shared molecular identifiers between two omics data, any pair
of molecules in different omics data are considered independent.
This independent mode is necessary, for instance, when
visualizing microRNA and protein data, where molecular
identifiers do not overlap.

It is often necessary to visualize quantitative data at a
resolution deeper than genes. For instance, some data are
summarized by genomic location or by mRNA transcripts rather
than the whole gene, or by peptides rather than whole protein.
These nested identifiers, unless specifically linked, are distinct
across omics modalities and may have many-to-many relation-
ships. multiSLIDE can automatically recognize nested identifiers
and group them for visualization. For instance, in the second case
study, the phosphorylation site-level data has nested identifiers:
proteins and their amino acids amenable to a given type of
posttranslational modification, e.g., serine, threonine, and tyr-
osine residues for phosphorylation (p-sites). For this dataset,
when features are ordered by proteins, multiSLIDE performs two-
level hierarchical clustering. The order of proteins is determined
by clustering the average peptide intensities (default choice) of all
p-sites in the protein, and the order of p-sites within each protein
is determined by independently clustering the data of the p-sites.
The user can choose a summary statistic (average, maximum,
minimum, or sum) to compute protein-level summaries.
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multiSLIDE can also infer the relationship between omics
modalities when datasets have shared identifiers. For instance,
when visualizing transcriptomic and proteomic data, if the
transcriptomics dataset contains gene symbols and the proteomic
dataset contains Uniprot accession identifiers, multiSLIDE
internally maps both identifiers to Entrez, and connect genes
and proteins that have the same Entrez identifiers. We refer to
these standard identifiers, which can be mapped to Entrez, as
“linkers”.

When visualizing omics modalities where the resident molecules
are mutually exclusive, e.g., proteome and metabolome, multiSLIDE
allows users to input the inter-omics relationship data for linked
visualization. Further, externally curated biological networks, such
as transcription factor (TF) regulatory networks25–30 and kinase-
substrate networks31–33, can be integrated and visualized through
linkers in multiSLIDE.

Figure 1 illustrates a typical workflow in multiSLIDE. The
structure of delimited input text files, the various querying
mechanisms, and the output figure and analysis file options, are

discussed in the Visualization Workflow section of Methods. The
workflow is also described in the context of the multiSLIDE
interface in Supplementary Fig. S1.

Case Study I: Dynamic transcriptome and proteome in HeLa
cells during ER stress. In the first case study, we visualize the
preprocessed and filtered data from Cheng et al.21 in multiSLIDE
using search keywords chosen from the original paper. The
authors characterized acute transcription regulation and delayed
translation control for genes involved in the following functions:
UPR, translation attenuation, ER-associated protein degradation,
and cellular apoptosis. A direct consequence of ER stress is
aggregation of misfolded and unassembled proteins in the orga-
nelle. As a survival mechanism following the loss of homeostasis,
the ER responds by increasing protein folding capacity. UPR is
involved in extensive reprogramming of the transcription and
translation regulation34–36. Activated UPR initiates adaptive
stress response to regulate downstream effectors, and switches on/
off transcription regulation and protein synthesis to restore ER
homeostasis37,38. To visualize this without filtering out any genes,
we searched keywords “unfolded protein response” and “endo-
plasmic reticulum” to retrieve all related pathways and GO terms.
Genes for pathways and GO terms selected from the search
results were retrieved and visualized for both transcriptome and
proteome data.

In addition, prior to multiSLIDE visualization of matching
mRNAs and proteins for 1237 genes, the mRNA data was
separately inspected in the context of the whole transcriptome
(16,704 genes) using a related single-omics data visualization tool
SLIDE39 (see Methods and Supplementary Fig. S2). This global,
unfiltered view shows the three phases of ER stress response
characterized by Cheng et al.: early phase (<2 h), intermediate
phase (2–8 h), and late phase (>8 h). The transcriptome
regulation suggests a spike-like pattern in the transition from
the early phase to the intermediate phase of the response, peaking
in the intermediate phase before returning to original levels or
converging to new equilibrium states different from 0 h in the
late phase.

In Fig. 2a, we show heatmap visualizations of the selected UPR
and ER stress-related genes from the dual-omics data in
multiSLIDE. We clustered the genes by hierarchical clustering
of the mRNA data with Euclidean distance and average linkage,
which automatically synchronizes the order of display in the
protein data. The lines between the two omics data connect the
mRNA and protein molecules from the same genes. In the web
interface, the user can click on specific genes in one omics data to
highlight their corresponding molecules in the other omics data.
The user can rearrange this visualization by performing further
clustering on the protein data (Fig. 2b), generating an
“independent” clustering outcome. As the connecting lines follow
the original map throughout these operations, the user can easily
track the concordance or discordance of mRNA and protein
expression patterns across the samples (time points here). These
dynamically changing visualization instances clearly show two
key observations: (i) the time course patterns in these selected
genes are highly consistent between replicates in some genes, and
(ii) the time course patterns are discrepant for many genes, and
they highlight a 2 h time gap in response time in some genes such
as HSPA5 (BiP/GRP-78) and protein disulfide isomerases
(PDIA3, PDIA4, and PDIA6) between the mRNAs and the
proteins, suggesting these HeLa cells underwent considerable
cellular reorganization at 2 h post treatment and subsequent
control of protein translation of key ER stress genes.

For the genes reported by the keyword searches, the
independent clustering of the two omics data show that some
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Fig. 1 Visualization workflow of multiSLIDE. Inputs to multiSLIDE are
preprocessed quantitative expression profiles, formatted as delimited text
files, with a separate file for each omics data. Users can select features to
visualize, using keyword-based search, using the “Upload Pathways” option,
or through enrichment analysis. Users can interact with the selected data
using the many options for ordering/clustering of molecules and samples,
as well as the customizable filtering of molecules based on differential
expression levels. Once the exploration of the data reveals interesting
patterns, users can save the visualizations as scalable vector graphics
(SVG) or PDF files. The analysis workspace can also be saved as a.mslide
file, retaining user selections and interactions, for sharing among
collaborators. Snapshots of the visualization interface corresponding to this
workflow are presented in Supplementary Fig. 1.
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Fig. 2 Visualization of unfolded protein response in mammalian cells responding to stress. mRNA and protein-level expressions, across eight time-
points (0, 0.5. 1, 2, 8, 16, 24, and 30 h after treatment) and two replicates, are jointly visualized in multiSLIDE to understand the dynamics of UPR under ER
stress. The Legends panel, on the left, enumerates the selected GO terms and pathways. The colored tags in vertical tracks alongside the heatmap indicate
associations between genes and GO terms/pathways. Panels a and b represent the two modes of visualization, synchronized and independent
(unsynchronized), respectively. In the synchronized clustering mode, the same order of genes is applied to both the mRNA and protein levels. In the
independent clustering mode, mRNA and protein data were clustered independently, using Euclidean distance and complete linkage.
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genes are transcriptionally regulated as early as 0.5 h. Not
surprisingly, the most pronounced gene expression response
was observed for HSPA5, the master sensor of misfolded proteins
in ER36, as well as heat shock protein 90 beta family member 1
(HSP90B1), and PDIs. In contrast to the transcription regulation
of these genes, the corresponding protein abundances do not
increase until after 2 h (top portion of Fig. 2a), which corresponds
to the time point until which the cells remained under cell cycle
arrest.

In sum, jointly visualizing the mRNA and protein expression
data in a time-course dependent manner helps the user to dissect
the dynamic response stages around the prior knowledge of UPR.
Clustering genes at the mRNA level and applying the same
ordering at the protein level helped visualize whether the clusters
propagate between the two omics levels.

Case Study II: Proteome and phosphoproteome visualization
in an ovarian cancer cohort. We next visualized high-grade
serous ovarian carcinoma data22 from mass spectrometry-based
proteomics and phosphoproteomics experiments conducted by
the Clinical Proteomics Tumor Analysis Consortium (CPTAC).
A total of 67 tumor samples with proteomic data (3329 unique
proteins) and phosphoproteomic data (5746 p-sites) were visua-
lized using multiSLIDE (see Methods).

In this example, we demonstrate the custom network feature of
multiSLIDE. By connecting the abundance of whole proteins with
individual amino acid-level phosphorylation data, we pursue two
visualization objectives. First, we visualize the relationships
between the abundance of proteins along with the site-specific
phosphorylation levels in the same proteins. As the protein
identifiers are present in both datasets, multiSLIDE automatically
derives the relationship. Second, we use multiSLIDE to
simultaneously visualize the kinase proteins from the proteomics
data and the substrate sites from the phosphoproteome data, with
lines connecting known kinase-substrate pairs. In this instance,
we uploaded the “custom” network from externally curated31–33

kinase-substrate map to the tool as a user (see Methods for
details).

We remark that this data example is different from the first
example in terms of the mapping of identifiers between the two
omics data. In the previous example of mRNA and protein data,
each gene appeared at both molecular levels, and thus there was a
one-to-one mapping between the omics data sets. By contrast, the
proteome and phosphoproteome data are reported at different
granularities—multiple phosphorylation sites reside in a protein
sequence. This creates one-to-many mapping between the
proteome and phosphoproteome.

In the original analysis of the data by Zhang et al., the authors
identified five proteome-based molecular subtypes: differentiated,
immunoreactive, proliferative, mesenchymal, and stromal, with
enrichment of distinct pathways in the discriminating protein
signatures. In multiSLIDE, we initiate visualization by searching
the keywords: DNA replication, cell–cell communications, and
complement cascade, corresponding to the authors’ enriched
pathways22. Applying one-way ANOVA (p value ≤0.05) and a
multiple testing-corrected significance threshold of 5% FDR
(Benjamini–Hochberg procedure, built-in feature), there were a
total of 610 proteins and 490 phosphorylation sites (p-sites) that
are statistically significant in the comparisons of the subtypes
(Supplementary Fig. S3).

Next, we looked more closely at the GO term “extracellular
matrix” (ECM) alone. Using one-way ANOVA (p value ≤0.05
followed by FDR 10%), we found 155 proteins and 116
phosphosites that are differentially expressed (Supplementary
Fig. S4). Unsynchronized, independent hierarchical clustering of

the proteins and the p-sites, using Euclidean distance and average
linkage, shows that a number of ECM proteins are elevated in the
mesenchymal and stromal subtypes. Further, a subset of ECM
proteins is dominantly upregulated in the stromal subtype and
multiple ECM proteins, including plectin (PLEC), lamin A/C
(LMNA), filamin A (FLNA), and vimentin (VIM), and they have
multiple phosphorylated sites. Vimentin is an important marker
for the epithelial-mesenchymal transition in tissues (EMT), a
phenomenon where cells undergo transition from epithelial
to mesenchymal phenotype, ultimately leading to cancer
metastasis40. The visualization immediately shows that p-sites
in PLEC, LMNA, FLNA, VIM also show consistent subtype
specificity in the mesenchymal and stromal subtypes, suggesting
possibility of these protein modifications being a hallmark of
those subtypes. Studies have shown that vimentin, a type III
intermediate filament (IF) protein, is hyperphosphorylated during
mitosis by serine/threonine protein kinases involved in cell cycle
which promotes the disassembly of its filamentous structure41,42.
Filamin A, an actin binding protein, is also phosphorylated at
multiple sites by different protein kinases. To understand kinase-
dependent phosphorylation pathways, we next visualize the
kinases present in the proteomic data jointly with the respective
substrates in the phosphoproteome data.

The human kinome consists of ~518 kinases43, among which
83 were present in the current proteome dataset. In our curated
kinase-substrate map, we found these 83 kinases phosphorylates
8269 substrates. Among these 8269 substrates, 454 were present
in the current phosphoproteome data. In multiSLIDE, users can
select molecules to visualize by using the search functionality as
described before, or through enrichment analysis (see Methods),
or by uploading customized subsets of molecules. Here, using the
third option, we jointly visualized 83 protein kinases and
454 substrates (Supplementary Fig. S5). At the protein level, the
calcium/calmodulin-dependent protein kinases (CAMK2B,
CAMK2G, CAMK2D, and CAMK2A) are upregulated in
mesenchymal and stromal subtypes, whereas the CMGC kinases,
consisting of cyclin-dependent kinases (CDK1, CDK2, and
CDK11A) and glycogen synthase kinases (GSK3A and GSK3B)
are upregulated in the proliferative subtype. These results affirm
the widely known role of CDK1 and CDK2 in orchestrating
mitotic progression, a phase in the cell cycle process during which
protein phosphorylation is also known to peak44.

To further investigate subtype-specific protein kinase activity,
we calculated the Pearson correlation coefficients between the
subtype-specific levels of kinase abundance and substrate site-
level phosphorylation, outside of multiSLIDE. Supplementary
Fig. S6 shows the histograms of calculated correlation coefficients
for each subtype. The subtypes: immunoreactive, proliferative and
stromal have relatively greater numbers of highly positively
correlated (≥0.8) kinase-phosphosite pairs. In the “proliferative”
subtype, among these kinase-substrate p-site pairs, those pairs
upregulated in both omics were visualized in multiSLIDE (Fig. 3),
mimicking the kinase-substrate enrichment analysis45. In addi-
tion, the Uniform Manifold Approximation and Projection
(UMAP) visualization of the entire proteome and phosphopro-
teome data, performed outside multiSLIDE and shown in Fig. 3b,
c respectively, also revealed stratification of the proliferative
subtype patients, driven by the portion of the data visualized
above46.

Here, we uploaded the kinase-substrate relationships into
multiSLIDE using the network upload feature, which allows users
to visualize externally created inter-omics connections. The lines
from CDK1 and CDK2 point to all their known substrates. We
see that most of the substrates of CDK1 and CDK2 show elevated
phosphorylation levels in the “proliferative” and the “immunor-
eactive” subtypes. These proteins are involved in the G1/S phase
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transition which is known to be initiated by cyclin-dependent
kinases47. The examples showcase the different querying
mechanisms available in multiSLIDE, giving users the flexibility
to visualize any subset of the data while retaining the relational
information between omics data.

Case Study III: Human plasma proteome and microRNAome
associated with insulin resistance. In the last example, we
visualize non-matching molecular entities between omics mod-
alities, i.e., plasma proteins and miRNAs between eight IR and
nine IS subjects23. miRNAs are small non-coding RNAs that
control the fate of target mRNAs through mRNA degradation or
translation repression48. Specifically, by binding to the sequence
motifs in the 3′ UTR region of the target gene, miRNA diverts the
mRNAs away from ribosomes and thereby inhibits protein
translation, or primes the mRNAs for degradation via dead-
enylation and decapping49. The integrative analysis in the original
paper incorporates this negative relationship into the search to
identify IR-associated plasma proteins and circulating miRNAs
that are negatively correlated with the proteins. The authors made
the assumptions that an elevated level of a circulating miRNA
reflects increasing transcription of the miRNA in the originating

donor tissues (or organ systems) and it would have resulted in
reduced secretion of the target protein into the blood as well.

What sets this visualization apart from the previous two
examples is that there is no direct link between the mapping
identifiers of the two omics modalities (Fig. 4). The only genome-
scale relationship data between proteins and miRNAs are miRNA
target sites predicted in silico, which can be achieved by a variety of
computational tools50–53. Using multiSLIDE, we searched key-
words: metabolism, metabolic pathways, inflammatory response,
glucose transport, and lipid homeostasis. The original query
resulted in a long list of 414 proteins and 191 miRNAs
(Supplementary Fig. S7), and thus we performed hypothesis testing
with FDR control (p value ≤0.05 followed by FDR 5%) within
multiSLIDE (Mann–Whitney U-test and Benjamini–Hochberg
method). This functionality gives users the flexibility to adjust the
size of data for display. This internal filtering produced 19 proteins
and 76 miRNAs significantly different between IR and IS subjects
(see Methods).

In Fig. 4, although there is variation within the IR and IS
groups, hierarchical clustering using correlation distance (1 minus
Pearson correlation) and complete linkage function in multi-
SLIDE reveals two clear clusters in the miRNA data, separated by

Proteomic-subtype

CDK4
MTOR
CSNK2A1
OXSR1
VRK1
PRPF4B
SCYL2
MAPK13
CDK11A
SYK
CAMK1D
CDK1
CDK2
PAK4
PRKDC
PRKCD
STK24
PRKAA1
SRC
YES1
HCK
FGR
CDK5
DDR1
PAK2
GSK3B
GSK3A
PTK2
SCYL1
CSNK1A1
CSNK1D
MARK3
MAP2K3
PTK7
AKT1
AKT2

TC
G

A-
13

-1
48

9
TC

G
A-

42
-2

59
0

TC
G

A-
24

-1
10

4
TC

G
A-

24
-2

26
7

TC
G

A-
25

-1
32

1
TC

G
A-

25
-2

40
9

TC
G

A-
24

-1
55

3
TC

G
A-

24
-1

60
3

TC
G

A-
29

-2
43

2
TC

G
A-

24
-1

46
6

TC
G

A-
24

-1
60

4
TC

G
A-

23
-1

12
4

TC
G

A-
24

-2
02

4
TC

G
A-

29
-1

76
3

TC
G

A-
24

-1
10

3
TC

G
A-

24
-2

02
3

TC
G

A-
25

-2
40

0
TC

G
A-

61
-2

00
8

TC
G

A-
24

-1
55

5
TC

G
A-

29
-1

77
6

TC
G

A-
24

-1
55

2
TC

G
A-

30
-1

86
6

TC
G

A-
24

-2
28

8
TC

G
A-

61
-1

99
5

TC
G

A-
29

-1
68

8
TC

G
A-

36
-2

53
0

TC
G

A-
61

-1
90

7
TC

G
A-

24
-1

42
8

TC
G

A-
36

-2
54

3
TC

G
A-

23
-1

12
3

TC
G

A-
13

-1
48

4
TC

G
A-

24
-2

02
0

TC
G

A-
29

-1
77

4
TC

G
A-

24
-2

03
0

TC
G

A-
24

-1
46

7
TC

G
A-

29
-1

76
2

TC
G

A-
29

-1
77

5
TC

G
A-

61
-1

74
1

TC
G

A-
29

-1
69

3
TC

G
A-

25
-1

63
5

TC
G

A-
61

-2
61

2
TC

G
A-

25
-1

62
8

TC
G

A-
36

-1
57

6
TC

G
A-

24
-1

54
5

TC
G

A-
13

-2
07

1
TC

G
A-

13
-1

49
9

TC
G

A-
24

-2
28

9
TC

G
A-

29
-1

77
7

TC
G

A-
24

-1
56

2
TC

G
A-

42
-2

58
8

TC
G

A-
61

-1
91

9
TC

G
A-

24
-1

43
0

TC
G

A-
25

-1
32

0
TC

G
A-

24
-1

43
5

TC
G

A-
13

-1
49

4
TC

G
A-

24
-1

55
6

TC
G

A-
24

-2
26

0
TC

G
A-

36
-2

52
9

TC
G

A-
29

-2
41

4
TC

G
A-

24
-1

56
3

TC
G

A-
25

-1
31

9
TC

G
A-

24
-1

92
3

TC
G

A-
25

-2
40

4
TC

G
A-

36
-1

58
1

TC
G

A-
25

-1
63

0
TC

G
A-

24
-1

55
1

TC
G

A-
24

-1
55

0

Protein
 Genes: 36, ordered by hierarchical 

clustering (distance=correlation, 
linkage=complete) 

Samples: 67 
−2 0 2

0

0.02

0.04

0.06

Proteomic-subtype

EIF4EBP1, t70
MOB1B, t35
TCOF1, s583
NSFL1C, s140
RB1, s795
ISCU, s14
MAP4, s696
SRRM2, s1326
SRRM2, s1329
SRRM2, t1413
SRRM2, t866
TSC2, s981
STK39, s371
TCF3, s379
HSF1, s121
LIG3, s210
U2AF2, s79
ATR, s435
SPHK2, s387
RAN, s135
EIF4ENIF1, s670
EIF4ENIF1, s78
EIF4ENIF1, s951
PRKCD, s645
PRKCD, t218
EFHD2, s74
PTPN3, s359
SLC9A3R2, s303
HSP90AA1, s263
ARHGAP35, s1150
CDK16, s119
STMN1, s38
STMN1, s16
KIF4A, t799
KIF4A, s801
CTNNB1, s191
CTNNB1, s552
ERF, s327
NCOA1, s395
KHDRBS1, s35
KHDRBS1, s20
PDCD4, s457
ZC3HC1, s395
SUPT6H, t1523
NUMA1, s2047
RBM17, t71
RALY, s135
CDCA7L, s117
SNRNP70, s226
CDC25C, s216
SSB, s366
ARID1A, s363
HJURP, s486
XRCC1, s266
XRCC1, s241
LIG1, t183
LIG1, s141
CTNND1, s268
RBMX, t216
RBMX, s326
RBMXL1, s326
TBC1D4, s341
KAT5, s90
GTF2I, s784
GTF2I, s412
HSP90AB1, s226
HSP90AB1, s261
HNRNPA3, y360
CAD, s1859
DYRK1B, y273
CARHSP1, s41
CARHSP1, s52
DBN1, s142
CCNL2, s369
CCNL2, s338
FOXL2, s33
PPP1R14A, s130
NCOA2, s493
SAMHD1, t592
PRR5, s240
CDK9, s347
RANBP2, s2280
PUM1, t711
SIRT1, s27
KLF3, s250
XPO1, s391
DCP1A, s62
DUT, s99
GSK3B, y216
GSK3A, y279
HNRNPA1, s6
CDK7, t170
CDK12, t893
CDK11B, s752
BCLAF1, s531
EZH2, t367
PARP1, s786
SUPT5H, t1034
TOP2A, s1106
GTF2F1, s385
ACACA, s80
NCL, s67
PTPN2, s304
ATRIP, s224
CELF1, s28
HNRNPH2, s104
HNRNPH1, s104
SMARCC2, s283
SMARCC2, s286
MCM2, s139
MCM2, s41
HIRIP3, s125
NUP35, s73
POU2F1, s448
ARID4A, s864
CUX1, s1270
RBL2, s1080
SETDB1, s1066
TP53BP1, s1678
NUCKS1, s181
CHEK1, s296
NPAT, t1350
ORC2, t116

TC
G

A-
13

-1
48

9
TC

G
A-

42
-2

59
0

TC
G

A-
24

-1
10

4
TC

G
A-

24
-2

26
7

TC
G

A-
25

-1
32

1
TC

G
A-

25
-2

40
9

TC
G

A-
24

-1
55

3
TC

G
A-

24
-1

60
3

TC
G

A-
29

-2
43

2
TC

G
A-

24
-1

46
6

TC
G

A-
24

-1
60

4
TC

G
A-

23
-1

12
4

TC
G

A-
24

-2
02

4
TC

G
A-

29
-1

76
3

TC
G

A-
24

-1
10

3
TC

G
A-

24
-2

02
3

TC
G

A-
25

-2
40

0
TC

G
A-

61
-2

00
8

TC
G

A-
24

-1
55

5
TC

G
A-

29
-1

77
6

TC
G

A-
24

-1
55

2
TC

G
A-

30
-1

86
6

TC
G

A-
24

-2
28

8
TC

G
A-

61
-1

99
5

TC
G

A-
29

-1
68

8
TC

G
A-

36
-2

53
0

TC
G

A-
61

-1
90

7
TC

G
A-

24
-1

42
8

TC
G

A-
36

-2
54

3
TC

G
A-

23
-1

12
3

TC
G

A-
13

-1
48

4
TC

G
A-

24
-2

02
0

TC
G

A-
29

-1
77

4
TC

G
A-

24
-2

03
0

TC
G

A-
24

-1
46

7
TC

G
A-

29
-1

76
2

TC
G

A-
29

-1
77

5
TC

G
A-

61
-1

74
1

TC
G

A-
29

-1
69

3
TC

G
A-

25
-1

63
5

TC
G

A-
61

-2
61

2
TC

G
A-

25
-1

62
8

TC
G

A-
36

-1
57

6
TC

G
A-

24
-1

54
5

TC
G

A-
13

-2
07

1
TC

G
A-

13
-1

49
9

TC
G

A-
24

-2
28

9
TC

G
A-

29
-1

77
7

TC
G

A-
24

-1
56

2
TC

G
A-

42
-2

58
8

TC
G

A-
61

-1
91

9
TC

G
A-

24
-1

43
0

TC
G

A-
25

-1
32

0
TC

G
A-

24
-1

43
5

TC
G

A-
13

-1
49

4
TC

G
A-

24
-1

55
6

TC
G

A-
24

-2
26

0
TC

G
A-

36
-2

52
9

TC
G

A-
29

-2
41

4
TC

G
A-

24
-1

56
3

TC
G

A-
25

-1
31

9
TC

G
A-

24
-1

92
3

TC
G

A-
25

-2
40

4
TC

G
A-

36
-1

58
1

TC
G

A-
25

-1
63

0
TC

G
A-

24
-1

55
1

TC
G

A-
24

-1
55

0

Phosphoproteome
 Genes: 123, ordered by hierarchical 

clustering (distance=correlation, 
linkage=complete) 

Samples: 67 
−2 0 2

0

0.02

0.04

0.06

Legends

Gene Groups

User-defined Functional Groups

 proteome

 phospho

Phenotypes

Proteomic-subtype

 Differentiated

 Proliferative

 Stromal

 Mesenchymal

 Immunoreactive

0

0

Subtypes Differentiated Immunoreactive Proliferative Mesenchymal Stromal

A UMAP visualization of the CPTAC ovarian cancer phosphoproteome data

0

0

Subtypes Differentiated Immunoreactive Proliferative Mesenchymal Stromal

A UMAP visualization of the CPTAC ovarian cancer protein data

a

b cProtein Phosphoproteome

Fig. 3 Visualization of kinase-substrate relationships in the CPTAC Ovarian Cancer data. a Visualization of the subset of kinases-substrate pairs, which
are upregulated in the proliferative subtype. The custom “Upload” option is used to select the molecules here. Kinase-substrate interactions were curated
from PhosphoSitePlus31, PhosphoNetworks32, and a predictive network inference approach33 to build a kinase-substrate map, which was uploaded into
multiSLIDE using the upload network feature. The connecting lines show these curated relationships, with the highlighted (brown) lines connecting cyclin-
dependent kinases CDK1 and CDK2 with known substrates. Supplementary Fig. S5 visualizes all the kinases-substrate pairs. b A UMAP visualization of the
whole proteomics data for 3329 proteins. The ellipse highlights a cluster of proliferative subtype patients in the protein data. c A UMAP visualization of the
whole phosphoproteome data for 5746 phosphosites. The ellipsis highlights a cluster of proliferative subtype patients in the phosphoproteome data.
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the dotted black line in Fig. 4. At the protein level, however, we
find that most plasma proteins are higher in the IR subjects than
in the IS subjects, forming a homogeneous cluster. This
observation prompts a reasonable speculation that the top cluster
may have to do with increased secretion of the selected 19
proteins at their respective donor tissues, likely from the organ
systems such as liver, adipose tissues, or kidney.

To further probe whether the proteins are potential targets of
translation control by these miRNAs, in whichever tissue they
originated from, we connected miRNAs and proteins in multi-
SLIDE with TargetScan map50. Any known miRNA target protein
is indicated by a connecting line in Fig. 4. Interestingly, some of
the lines showed that higher circulating levels of miR-130a-3p
and miR-128-3p in the IS subjects were associated with lower
level of their predicted target gene, low density lipoprotein
receptor (LDLR), a type-I transmembrane glycoprotein. It is
widely known that LDLR plays a critical role in maintaining
cholesterol homeostasis in the blood, and while insulin resistance
is defined by abnormal glucose metabolism, its pathogenesis is
increasingly being studied in the context of disordered lipid
metabolism54. The negative correlation between the two miRNAs
(miR-130a-3p and miR-128-3p) and the expression of LDLR in
IR subjects, evident from Fig. 4, is therefore interesting. This has
also been previously shown, through GWAS meta-analysis55,
where miR-128-1 was identified as a key to controlling LDL-C
uptake by regulating the expression of LDLR. Also, a pre-
vious investigation of the role of miR-130a-3p suggested that its
overexpression improves insulin sensitivity both in vitro and
in vivo56. All put together, this example shows that multiSLIDE

can integrate externally curated networks in multiSLIDE through
visualization of relationships between mutually exclusive omics
data sets.

Discussion
We have developed multiSLIDE, a new web-based tool for inter-
active heatmap-based visualization of multi-omics data. With
steady growth in multi-omics experiments, it is becoming
increasingly appealing to develop open-source analysis and
visualization tools. Using the versatile interface of multiSLIDE,
users can retrieve segments of data through keyword searches and
generate interpretable visualizations, with the flexibility to control
the size and readability of display contents. Existing tools for
multi-omics visualization tend to focus on displaying a small
number of genes within publicly available datasets, such as TCGA,
or visualize patterns at abstract levels without showing the actual
quantitative data. multiSLIDE addresses this gap–visualizing the
relational data along with actual quantitative data57. We demon-
strated how multiSLIDE enables targeted exploration of large
multi-omics datasets within proper biological contexts. Because
the architecture of multiSLIDE was built as a web-based tool, the
saved contents can be opened in any other computer with a
standard web browser. As such, multiSLIDE was designed to treat
both the data analysis and visualization as resources to be shared
and disseminated for collaborative research, a feature that is often
missing in currently available tools.

multiSLIDE has limitations, nonetheless. multiSLIDE is pri-
marily a search-driven visualization tool, which requires the users
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Fig. 4 Visualization of plasma proteins and microRNAs associated with insulin resistance. Shown in the heatmap are the molecules matched by the
keywords: metabolism, inflammatory response, glucose transport, and lipid homeostasis are visualized here after filtering by Mann–Whitney U-test (p
value ≤ 0.05 followed by FDR 5%). Proteins and miRNA are independently clustered using correlation distance (1 minus Pearson correlation) and complete
linkage function. The relationships between miRNA family names and their target proteins are extracted from TargetScanMap50. The original list of 414
proteins and 69 miRNAs, before filtering, is shown in Supplementary Fig. S7.
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to have prior biological hypotheses. Therefore, it may not be
particularly well suited for the unrestricted exploration of whole
multi-omics datasets. Such global exploration can be done using
other tools such as multiSLIDE’s sister tool SLIDE39. As an
alternative querying mechanism, multiSLIDE provides the option
to detect differentially expressed genes and perform enrichment
analysis to identify key pathways and GO terms enriched in the
user’s data. From the result of enrichment analysis, users can
select pathways and GO terms for visualization instead of having
to provide search keywords. A full-scale global visualization of
data in SLIDE can be a useful precursor to analyzing the data in
multiSLIDE. In addition, multiSLIDE does not provide func-
tionalities to preprocess and normalize data within the tool and
expects the user to prepare display-ready data sets . This was an
unavoidable choice as these preprocessing operations are often
better handled by validated domain-specific tools.

Visualization is an important tool to inspect data, gain new
insights, and communicate the findings to others, especially for
the analysis of complex multi-omics data. multiSLIDE has a
unique focus on visualizing raw quantitative data relevant to the
biological functions and genes queried by the user and integrating
information from multiple omics sources through relational
information, in contrast to the abstraction or projection-based
approaches commonly built in the existing multi-omics visuali-
zation strategies that often do not directly visualize the feature-
level data. As such, multiSLIDE can be used as a complementary
visualization tool to revisit the raw data along with other data
analysis methods or global visualization tools already available in
the literature.

Methods
Visualization workflow. Figure 1 illustrates a typical workflow in multiSLIDE. The
web-based visualization interface is shown in Supplementary Fig. S1a. Data analysis
begins with the user specifying or selecting pathways, GO terms, or individual
genes to visualize using one of three options: keyword search, enrichment analysis,
or pathway upload (see Input Data section for details). For the first option, mul-
tiSLIDE provides an intuitive keyword-based search syntax for quickly searching
multiple pathways, GO terms, and genes. The relevant genes and gene groups are
selected from the search results and they are visualized, as shown in Supplementary
Fig. S1b, by clicking the group names.

Once the heatmap visualization is ready, network neighbors of a target gene on
protein–protein interaction (PPI) and TF regulatory networks can be added via
network neighborhood search, all enabled by a simple left-click on the gene of
interest. A selection of neighbors can be added to the visualization in real time. In
addition, multiSLIDE also overlays the information regarding pathways and GO
terms by vertical tracks next to each heatmap, highlighting the intersections
(common genes) between functional groups (side bars on the right side of
heatmaps, Supplementary Fig. S1a).

The scales and dynamic range of detection and quantification are different
across omics platforms. As a result, direct comparison of absolute expression values
is not meaningful. Customizing the graphical parameters in each omics data are
therefore essential for successful visualization. Individual heatmaps are
independently customizable (see heatmap settings panel, Supplementary Fig. S1c).
Settings common to all heatmaps, such as zoom (or resolution) and orientation of
heatmaps, are applied to all heatmaps simultaneously using the global settings
panels (Supplementary Fig. S1f). multiSLIDE has no restrictions on the amount of
data that can be loaded in a single snapshot. As different systems and browsers
have different computing capabilities, this choice is left to the user. Using the layout
options (Supplementary Fig. S1f), the size of a single snapshot can be optimized,
depending on the data transfer rate between the multiSLIDE server and the
browser, and the browser’s latency in rendering the data.

multiSLIDE has a variety of sorting, clustering, and filtering methods to help
users discover patterns in the data. Interesting genes can be hard to discern when
they are incoherently mixed with other genes, particularly when visualizing large
pathways or networks. With appropriate ordering of genes and samples, previously
unforeseen structures in the data can emerge. Molecules can be sorted by gene
groups, based on the statistical significance level in a differential expression
analysis, or based on hierarchical clustering. Samples can be ordered by a
combination of phenotypes or based on hierarchical clustering for interrogating the
strength of phenotype–genotype associations. Hierarchical clustering can also be
customized by selecting different linkage functions, distance metrics, and leaf
ordering schemes.

multiSLIDE can remove statistically non-significant genes from the
visualization through internal differential expression analysis in real time basis. In

large pathways and networks, a substantial number of genes may not show
differential expression, and thus removing these stably expressed or non-expressed
genes improves the visualization clarity. multiSLIDE automatically classifies
phenotypes into one of three categories based on the data: binary, categorical, or
continuous. For binary and categorical data, users can choose to perform either
parametric or non-parametric tests. The parametric tests used for binary and
categorical phenotypes are two-sample t-test and analysis of variance (ANOVA),
respectively. The corresponding non-parametric tests are Mann–Whitney U- test
and Kruskal–Wallis test, respectively. For continuous data, linear least squares
regression is used. Additionally, users can perform multiple testing correction using
the Benjamini–Hochberg procedure to control the FDR.

As mentioned earlier, the user can choose to apply hierarchical clustering and
filtering of features either in a synchronized mode or in an independent mode. In
the synchronized mode, hierarchical clustering and filtering are performed on the
features of one of the datasets selected by the user, and the ordering of that dataset
is used to order the features of other datasets. This mode is only meaningful when
the datasets share a linker column. By contrast, in the independent mode,
hierarchical clustering and filtering are applied independently for each omics data.
A combination of these modes can also be used, where a subset of omics is
synchronized and a subset is kept independent, by customizing the omics
relationships, as shown in Supplementary Fig. S1f.

Software architecture. multiSLIDE is built on a distributed architecture, shown in
the schematic in Supplementary Fig. S8. The server side of multiSLIDE consists of a
state server, an analytics server, and a knowledge server. The client can be any
modern web browser. These four components are separate applications that
communicate with each other through well-defined application programming
interfaces (APIs). Due to this modular design, multiSLIDE can scale to distributed
multi-node environments, with many possible deployment configurations.

The state server is an HTTP server, implemented in Java, that maintains client
state information, user uploaded data, and user selections. The analytics server, also
an HTTP server, is implemented in Python and is the main computation engine.
The knowledge server, implemented using MongoDB, manages the physical
storage of curated gene annotation, regulatory networks, biological pathways and
GO terms. The analytics and knowledge servers are stateless. The client interacts
only with the state server by sending HTTP requests and receiving data in response
in optimized JavaScript Object Notation (JSON). The client is implemented using
Angular, with the data and presentation layers completely decoupled. Layouts can
therefore be altered without the need to re-fetch data from the server. The
visualizations are rendered using resolution independent scalable vector
graphics (SVG).

Databases: Pathways, GO terms, and molecular networks. multiSLIDE
includes comprehensive genome-scale annotations and GO databases for mouse
and human, extracted using R Bioconductor58. The data in these R packages are
well-structured and routinely used by bioinformaticians in their analyses. multi-
SLIDE can recognize five standard gene identifiers (linkers): Entrez, HUGO Gene
Nomenclature Committee (HGNC) Gene Symbols, ENSEMBL identifiers, NCBI
Reference Sequence (RefSeq) identifiers and UniProt identifiers, as well as miRNA
identifiers from miRbase59. To facilitate pathway and GO keyword-based search,
multiSLIDE includes comprehensive biological pathways obtained from Con-
sensusPathDB (CPDB) (http://cpdb.molgen.mpg.de/)60,61. Validated miRNA target
interactions on pathways and GO from miRWalk2.0 (http://zmf.umm.uni-
heidelberg.de/apps/zmf/mirwalk2/)62 are also included in multiSLIDE.

Various networks indicating relationships between molecules within the same
molecular level such as PPI network (within proteins), as well as networks
indicating relationships between molecules at different levels such as TF regulatory
networks, are also integrated in multiSLIDE, to facilitate network search. These
networks come from diverse sources and are either experimentally validated
relationships or putative interactions that rely on computational prediction. For
instance, TargetScan (http://www.targetscan.org)50, a database widely used to
represent miRNA-mediated gene regulation, houses predicted targets of miRNAs
and is included in multiSLIDE. multiSLIDE also integrates Human TF—targets
network information from additional databases: TRED25, ITFP26, ENCODE27,
Neph201228, TRRUST29, and Marbach201630. Mouse TF—target network
information was obtained directly from TRRUST. Physical interactions between
proteins were sourced from iRefIndex (http://irefindex.org/wiki/index.php?
title=iRefIndex)63, which indexes PPI networks from a number of databases.

Input data. multiSLIDE provides a simple and intuitive interface for users to
upload their own data and create an analysis. Each omics data should be uploaded
into multiSLIDE in the form of a separate delimited ASCII text file, containing
quantitative measurements across samples. These files can be created and edited
using any text editor. Rows in the data file correspond to molecular features, and
columns can either be vectors of identifiers or measurements. Data columns cor-
respond to samples or experimental conditions and contain measurements in the
form of counts, numerically encoded categorical data, or continuous data. Meta-
data columns contain feature identifiers and can be numeric or non-numeric. In
case feature identifiers are standard identifiers such as Entrez or gene symbol, they
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can be tagged as such during analysis creation. multiSLIDE assumes that the raw
data have already undergone preprocessing and transformation. Each column in
the data file must have a unique column header.

In addition to data files, a separate sample information file containing sample
attributes (e.g., clinical data or phenotypes) is also required. The sample
information file should also be formatted as a delimited ASCII text file, with rows
corresponding to samples and all columns, except the first column, corresponding
to sample attributes or phenotypes. The first column in this file must contain
sample names that are identical to the measurement column headers in data files.
There are no restrictions on the number of sample attributes or phenotypes the
sample information file can contain. The visualization interface allows users to
select a subset of (at most five) phenotypes for visualization. The sample
information file can also be used to include additional sample information such as
descriptive sample names, replicate names, or time points.

The associations between any two omics can be customized by uploading a
network file. These files must have at least two columns, one for each omics, with
rows containing identifiers that are connected. Optionally, a third and fourth
column, containing color information and a descriptor (such as a name or source),
respectively, can be provided for each connection in the network file. These
optional columns can be used to annotate connections, for instance, to visually
categorize experimentally validated, putative, and predicted molecular interactions
or interactions acquired from different external databases. Even when linker
columns are available and multiSLIDE automatically infers the associations,
network files can be used to override them.

Querying mechanisms. multiSLIDE provides three querying mechanisms for
users to select a subset of molecules to visualize from the uploaded data files. The
first option, keyword-based search, was discussed in the Visualization Workflow
section above. The second querying mechanism is through enrichment analysis,
which requires data files containing standard gene identifiers. Unlike keyword-
based search, this option is useful when the user does not have a priori knowledge
or benchmark pathways, GO terms, or genes of interest. multiSLIDE uses hyper-
geometric test to evaluate statistical significance of function enrichment in the
differentially expressed molecules. To perform enrichment analysis, the user spe-
cifies a set of parameters, such as the phenotypic groups to compare and identify
differentially expressed genes, the significance level, to name a few. The differential
expression analysis performed prior to enrichment analysis requires the same user
inputs and follows the same methodology as the significance based filtering feature
described in the Visualization Workflow section. The background list used for the
hypergeometric test includes all the molecules present in the selected omics dataset.
The results of enrichment analysis are listed in the interface in ascending order of p
values, where the user can click on enriched pathways or GO terms and add them
to the visualization. Several options such as size of pathways, the number of dif-
ferentially expressed genes in the pathway, are also available to filter enrichment
analysis results. Users can also download a detailed report of the enrichment
analysis results in a tabular format. Finally, the third querying mechanism is to
upload a pathway file containing user-specified functionally relevant molecules.
This option is for data files that contain non-standard identifiers. For example,
when visualizing metabolomics data, since the map between genes and metabolites
has not been fully charted by experimental means, standard shared identifiers
cannot be provided. A pathway file contains four columns: functional group name,
data filename, identifier name, and identifier value. Each row of the pathway file
specifies molecules with identifiers matching the criteria identifier name= identi-
fier value from the specified data filename and adds them to the functional group
specified. A single pathway file can therefore be used to describe multiple groups of
functionally relevant molecules.

Output data. multiSLIDE allows both the data analysis and the generated visua-
lization to be shared and disseminated online for collaborative research, a feature
that is often missing in existing visualization tools. In multiSLIDE, visualization in
the current view can be rendered in a ready to print form, using the save visua-
lization option. This re-renders the current view in a more compact form in a
separate window in resolution independent SVG format. The print or save as
options of the browser can be used to save the contents of the window as a high-
resolution PDF file (Supplementary Fig. S1d).

The analysis workspace can be saved as.mslide files and shared among
collaborating parties (Supplementary Fig. S1d). These files can be loaded back into
a different instance of multiSLIDE running on any web browser for continued
analysis. The saved analysis retains all user customizations and data selections, as
well as the raw and processed data in JSON format.

Data set I: Dynamic transcriptome and proteome in HeLa cells during ER
stress. The first case study explores the whole transcriptome data from Cheng
et al21. (16704 genes). In the dual-omics time-course experiment, HeLa cells were
treated with a sublethal dose of dithiothreitol (DTT) inducing ER stress, and then
sampled at eight time points (0, 0.5, 1, 2, 8, 16, 24, and 30 h after treatment) for
transcriptome and proteome profiling. In their study, a series of quality filters
resulted in the final set of 1237 genes with matched mRNA and protein data.

Prior to visualization in multiSLIDE, we inspected the entire transcriptome data
using SLIDE39, a related tool that we have previously developed for full-scale
single-omics data visualization. The log-transformed mRNA and protein
measurements of each gene were normalized by subtracting the pretreatment
measurement (0 h). This normalization was performed independently for each
replicate, turning the abundance values into (log2) ratios to the baseline. The
normalized data is visualized after applying hierarchical clustering in
Supplementary Fig. S2. In Supplementary Fig. S2a, search tags highlight genes
belonging to the GO term “endoplasmic reticulum unfolded protein response”
(green bars to the right of the heatmap).

Data set II: Proteome and phosphoproteome in CPTAC ovarian cancer cohort.
In the second case study, we visualize high-grade serous ovarian carcinoma data from
mass spectrometry-based untargeted proteomics and phosphoproteomics experi-
ments conducted by the Clinical Proteomics Tumor Analysis Consortium (CPTAC).
Our visualization follows that of Zhang et al22. In their analysis, the authors retained
the 3586 proteins out of the 9600 that were quantified in 169 tumors. For the
phosphoproteome data, the authors quantified the relative abundance for 69 tumor
samples. Among these, 67 samples were quantified at both omics level and were used
in the final visualization. Phosphosites with more than 50% of missing data were
filtered out and the remaining missing values were imputed using KNNImpute64.
Since ischemia of the TCGA tumor samples was found to be a confounding variable
that altered phosphopeptide abundance, phosphosites that were shown to be regulated
in ovarian carcinoma65 were also removed. The abundances were converted to z-
scores before visualizing in multiSLIDE. A total of 16718 kinase-substrate interactions
were curated from PhosphoSitePlus31, PhosphoNetworks32 and a predictive network
inference approach33 to build the kinase-substrate map.

Data set III: Human plasma proteome and microRNAome associated with
insulin resistance. In the third case study, we visualize plasma proteins and
miRNAs between eight IR and nine IS subjects23. The abundance values of 368
miRNAs and 1499 proteins were log transformed (base 2) and mean centered prior
to visualization in multiSLIDE. The miRNAs were mapped to the corresponding
miR Family obtained from TargetScan (http://www.targetscan.org)50. Predicted
miR family-target genes network information were extracted from TargetScan and
uploaded as a file into multiSLIDE to explore miRNA-mediated gene regulation.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The quantitative expression data used as inputs to multiSLIDE are available at: https://
github.com/soumitag/multiSLIDE. The data for Case Study I is available online at https://
www.embopress.org/action/downloadSupplement?doi=10.15252%
2Fmsb.20156423&file=msb156423-sup-0002-DatasetEV1.xlsx. The data for Case Study
II is available online at https://www.cell.com/cms/10.1016/j.cell.2016.05.069/attachment/
15e46617-bec0-42cc-82fb-71f842e8aaac/mmc3.xlsx. The data for Case Study III can be
found in Table S1 of https://www.frontiersin.org/articles/10.3389/fphys.2019.00379/
full#supplementary-material.

Code availability
Online version of multiSLIDE is available with multiple demo analyses that users can
open with a single click and explore. Users can also upload their own data here. For
continued use, users or facility managers are encouraged to install multiSLIDE on their
own computers or servers using the pre-built docker image. The link to the online
version and the docker image can be found at https://github.com/soumitag/
multiSLIDE.66
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