Fig. 5: Processes impacting porewater carbonate mineral saturation. | Nature Communications

Fig. 5: Processes impacting porewater carbonate mineral saturation.

From: Non-lithifying microbial ecosystem dissolves peritidal lime sand

Fig. 5

Symbol shapes indicate sample location, symbol colors show depth, and arrows mark the effect of biogeochemical processes on DIC and alkalinity (ALK). a DIC and alkalinity data show that dissolution of ooid-skeletal sand contributed to increasing porewater carbon content and maintained aragonite saturation. If respiration-driven dissolution occurred by completely oxidizing organic matter, then the highest DIC, deep porewater must have ~5 mmol/kg of respired carbon. b Geochemical reactions that may non-uniquely sum to produce the DIC and alkalinity relationship observed. Aerobic respiration (red) and sulfide oxidation to sulfate (yellow) lower Ω, while aragonite dissolution (dark blue), anaerobic respiration by sulfate reduction (light blue), incomplete anaerobic respiration, and fermentation of organic matter to dissolved organic matter by sulfate reduction (purple), and evaporation (orange) increase Ω. c DIC concentration and DIC δ13C data show that core tops (shallower than ca. 100 cm) are dominated by DIC from respired organic material and core bottoms contain increasing amounts of DIC from dissolved aragonite sand. d Ternary diagram of inorganic carbon sources in the highest DIC, deep porewater (10.8 mmol/kg), which has a δ13C value of −1.25‰. It cannot have more than ~30% contribution from seawater DIC without exceeding observed salinities (white breaks in the color scale), so isotope mass balance indicates that it cannot have more than about 30% (~3 mmol/kg) contribution from respired carbon. This discrepancy with the stoichiometry of respiration-driven dissolution in panel a implicates a leak of unoxidized organic matter such as from the production of dissolved organic matter by incomplete anaerobic respiration and fermentation.

Back to article page