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Deep learning the structural determinants of
protein biochemical properties by comparing
structural ensembles with DiffNets
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Understanding the structural determinants of a protein’s biochemical properties, such as
activity and stability, is a major challenge in biology and medicine. Comparing computer
simulations of protein variants with different biochemical properties is an increasingly
powerful means to drive progress. However, success often hinges on dimensionality reduc-
tion algorithms for simplifying the complex ensemble of structures each variant adopts.
Unfortunately, common algorithms rely on potentially misleading assumptions about what
structural features are important, such as emphasizing larger geometric changes over smaller
ones. Here we present DiffNets, self-supervised autoencoders that avoid such assumptions,
and automatically identify the relevant features, by requiring that the low-dimensional
representations they learn are sufficient to predict the biochemical differences between
protein variants. For example, DiffNets automatically identify subtle structural signatures that
predict the relative stabilities of p-lactamase variants and duty ratios of myosin isoforms.
DiffNets should also be applicable to understanding other perturbations, such as ligand
binding.
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mechanistic understanding of how a protein’s sequence

determines its structural preferences and, ultimately, its

biochemical properties is crucial for advancing our
understanding of fundamental biology and for applications in
precision medicine and protein engineering. Sequence variations
can modulate a protein’s biochemical properties in a deleterious
manner leading to morbidity and mortality’:?, or in a manner
that can improve a species fitness, e.g., conferring the ability to
metabolize new substrates’. Moreover, entire protein families
with a wide range of functions and biochemical properties emerge
after long timescale evolution of protein sequences. In either case,
identifying the structural and dynamical differences between
protein variants is a powerful means to understand the
mechanism that connects a protein’s sequence and biochemical
properties*=®. Streamlining this process would make it easier to
infer the behavior of new protein variants, which would accelerate
protein engineering and the interpretation of newly discovered
variants. Understanding the structural basis for protein function
and dysfunction can also accelerate the development of drugs and
other therapeutics.

Identifying the structural features that determine the bio-
chemical differences between protein variants is often a difficult
challenge, requiring one to consider the entire ensemble of
structures that a protein adopts. Techniques like crystallography
and cryoEM sometimes reveal dramatic structural differences
between protein variants that readily explain their biochemical
differences. However, there are also many cases where structural
snapshots do not provide a clear explanation for the differences
between variants!'Y, suggesting that one must consider the entire
ensemble of thermally accessible configurations these proteins
adopt to understand the biochemical differences between
them!1-13, Molecular dynamics simulations can provide access to
these ensembles'. However, there are many factors that make
comparing these ensembles difficult. First of all, proteins have
thousands of degrees of freedom that enable them to adopt an
enormous number of different configurations!>16, Moreover, two
ensembles may be highly overlapping, requiring one to identify
differences in the probabilities of structural features that are
present in both ensembles, rather than simply identifying features
that are only present in one ensemble. For example, mutations in
the enzyme TEM p-lactamase were found to determine its spe-
cificity by modulating the relative probabilities of different
structures!?, but all the variants considered had a reasonable
probability of adopting any of these structures.

Dimensionality reduction algorithms play a crucial role in
dealing with the enormity of conformational ensembles. Many
powerful algorithms have been developed and employed suc-
cessfully, but the utility of each is limited by assumptions that are
not universally appropriate. For example, principal component
analysis (PCA)!718 finds linear combinations of features that
retain as much of the geometric variance in the original data as
possible, effectively assuming that large structural changes are
more important than subtle ones. Unfortunately, there are many
cases where this assumption is invalid, as in enzymes where
arbitrary motions of a large floppy loop may dwarf subtle but
functionally-relevant sidechain motions in the active site.
Autoencoders!® are a more powerful alternative since they con-
sider nonlinear combinations of features. These neural networks
learn a low-dimensional projection of data—called the latent
space—that is optimized to produce a high-fidelity geometric
reconstruction of a protein configuration (Fig. 1). However, like
PCA, autoencoders still focus on capturing large geometric var-
iations. Time-lagged independent component analysis (tICA)2%-21
is another common approach. It is similar to PCA but focuses on
slowly varying degrees of freedom rather than emphasizing large
geometric changes. However, there are many situations where the

conformational changes of interest are fast relative to others (e.g.,
allostery within the native ensemble that is faster than folding and
unfolding of the protein). Another recent approach,
VAMPnets?2, combines ideas from autoencoders and tICA to
achieve a dimensionality reduction that maps protein structures
to metastable states. This allows VAMPnets to capture non-
linearities that tICA cannot, but the assumption that slowly
varying degrees of freedom are more important than faster ones is
still limiting in many cases. Recent work suggests supervised
machine learning algorithms aid in identifying features that dis-
tinguish structural states?3. Here, we explore the idea of inte-
grating supervised machine learning and dimensionality
reduction algorithms.

We hypothesized that requiring a dimensionality reduction
algorithm to predict the biochemical differences between protein
variants would be a powerful means to ensure that it identifies the
relevant structural differences without being misled by a priori
assumptions. Instead of assuming what type of variation is
important (e.g., that large structural changes are more important
than smaller ones), such an algorithm would simply assume there
are differences between two or more classes of data and then
search for features that separate these classes.

To test this hypothesis, we introduce DiffNets, a dimensionality
reduction algorithm that uses a self-supervised autoencoder to
learn features of a protein’s structural ensemble that are pre-
dictive of the biochemical differences between protein variants
(Fig. 1). While we focus on protein variants, the algorithm should
be equally applicable to other perturbations, such as under-
standing the impact of post-translational modifications and
interactions with binding partners. DiffNets takes two inputs: 1) a
set of molecular dynamics simulations for each protein variant
and 2) the biochemical property of interest (e.g., stability or
activity) for each variant. The algorithm then learns a low-
dimensional projection (latent space) of the protein structures
that is explicitly organized to separate structural configurations
based on how closely they are associated with the biochemical
property of interest. DiffNets achieve this by combining super-
vised autoencoders?* with self-supervision. Supervised auto-
encoders are multi-task networks. Like standard (unsupervised)
autoencoders, they must learn a low-dimensional projection of
the data that retains sufficient geometric information to recon-
struct the original high-dimensional input (Fig. 1, left). However,
supervised autoencoders add the additional requirement that the
low-dimensional projection of the data be sufficient to predict a
label, in this case one related to the biochemical property of
interest. This second requirement forces the dimensionality
reduction to dedicate representational power to identifying
degrees of freedom that are important for the label instead of
focusing exclusively on large structural changes. The classification
task can be based on the entire latent space to minimize
assumptions, or on a subset of the inputs (e.g., the region around
a mutation, as in Fig. 1) to focus attention on critical areas. Self-
supervision provides an automated way to deal with the fact that
we know the biochemical properties of variants (i.e., their entire
structural ensemble), but the association between any specific
structure and that biochemical property is unknown. This pro-
blem is non-trivial because there is likely to be overlap between
ensembles (ie., structures that are visited by all variants).
Therefore, classifying all structures from variants without the
property of interest as different than all structures from variants
with the property is likely a misleading oversimplification. To
overcome this limitation, we present an expectation maximization
scheme that iteratively updates training labels to identify a subset
of structures that are more probable for variants with the bio-
chemical property of interest while allowing for overlap between
the conformational ensembles of different variants.
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Fig. 1 Standard autoencoder architecture (left) and an example DiffNet architecture (right). Autoencoders have an encoder that compress the input
data to a bottleneck, or latent, layer and a decoder that expands the latent representation to reconstruct the original input. The DiffNet adds a classification
task to the latent space. In the example shown, the input is split into two encoders. One is a supervised encoder that operates on atoms near the mutation
(cyan) and must predict the biochemical property associated with a structure. The second encoder is unsupervised and operates on the rest of the protein
(blue). The latent layers from these two encoders are concatenated and trained to reconstruct the original input.

To test the performance of DiffNets, we apply them to a set of
four TEM B-lactamase variants, which differ by single point
mutations, and to a set of eight myosin isoforms. First, we
demonstrate how the DiffNet classification task alters dimen-
sionality reduction of protein structures compared to standard
autoencoders. Then, we use DiffNets to recapitulate known dif-
ferences in P-lactamase variants’ folded ensembles that are pre-
dictive of changes in stability between variants. The relevant
changes are geometrically subtle (<1 A distance change) com-
pared to other motions, and thus, it originally took our group
several months to identify them. Therefore, attempting to reca-
pitulate this result is a challenging test case for new methods, such
as DiffNets. Finally, we use DiffNets to understand the structural
determinants of duty ratio (i.e., the amount of time a myosin
protein spends attached to actin) among eight myosin isoforms.
This is a difficult test case since small loop motions are critical for
determining duty ratio, which is difficult to pick out in large (e.g.,
~800 residues) myosin motor proteins. Further, the underlying
amino acid sequences of isoforms are highly divergent, so success
on this task would demonstrate that DiffNets are applicable to
variants with more complex perturbations compared to single-
point mutations.

Results

The DiffNet architecture. The DiffNet architecture is based on
an autoencoder, which is a deep learning framework commonly
used for dimensionality reduction®2>-3¢ (Fig. 1). Like standard
autoencoders, DiffNets connect an encoder and decoder network
to compress and reconstruct input data, respectively. In our case,
the input is protein XYZ coordinates (C,CA,N,CB) from a
simulation frame, which are whitened for normalization (see
methods). First, the encoder network transforms the input to
progressively reduce the dimensionality of the input to a bottle-
neck layer, called the latent space. Then, the latent space vector is
used as input to the decoder network that attempts to reconstruct
the original input. Mechanically, both the encoder and decoder
operate via successive matrix multiplications and non-linear
activation functions. DiffNets (and autoencoders) are initialized
with random matrix multiplications, and the network improves
by iteratively tuning the matrix values (weights) by training
across many examples. Concretely, the weights are trained to
minimize a loss function that measures the difference between the
input and output of the model, called the input reconstruction

error. Ultimately, if a DiffNet (or autoencoder) can compress and
then reconstruct the original input with high accuracy, this
implies that the low-dimensional latent space vector retains the
salient features that describe the input.

Inspired by supervised autoencoders24, DiffNets augment
autoencoders with a loss function that measures how accurately
the latent space vector performs a user-defined classification task
(e.g., did the protein structure come from a wild-type or variant
simulation?). Therefore, DiffNets must learn weights that
simultaneously minimize protein reconstruction error and
classification error. The constraint to minimize protein recon-
struction error enforces that the low-dimensional representation
of data retains a structural basis, and the classification constraint
is designed to reconfigure the latent space such that data points
are separated to highlight differences between datasets (e.g.,
biochemical differences between protein variants). While super-
vised autoencoders have been previously used as a way to obtain
better performance on a classification task?%, we use the
classification task to learn a more interpretable low-dimensional
projection of data. Additionally, we propose an expectation
maximization scheme such that classification labels are updated
between DiffNet training epochs. This self-supervision provides
an automated way to deal with the fact that we know the
biochemical properties of variants (i.e., their entire structural
ensemble), but the association between any specific structure and
that biochemical property is unknown.

The DiffNet architecture can be split to focus the classification
task on a region of interest within a protein. If there is a region of
interest known a priori (e.g., region around a mutation, or an
enzyme active site) the input may be split into two encoder
networks. In this case, only the encoder with inputs from the
region of interest performs a classification task, then the latent
spaces from each encoder are concatenated for input to the
decoder (see Fig. 1). This split architecture guides a DiffNet to
search in the region of interest to find differences between
variants. This is a reasonable default to use when studying
single point mutations as the region of a mutation is root of
differences between variants. Moreover, classifying based on
a region of interest does not preclude the identification of relevant
distal structural differences between variants. If a mutation
causes biochemically relevant differences at distal regions then
these regions are inherently linked to the state of the region of the
mutation and, thus, are implicitly linked to the classification task.

| (2021)12:3023 | https://doi.org/10.1038/s41467-021-23246-1 | www.nature.com/naturecommunications 3


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23246-1

\\\ ”
‘ ' More stable variant
Less stable variant

[} i

Fig. 2 Structural configurations sampled from molecular dynamics
simulations of wild-type TEM f-lactamase (gray) and an M182T variant
(red) that is far more stable. Helix 9 is circled in yellow and shown below
in a compact configuration (left, red) and a more extended configuration
(right, gray). Hydrogen bond distances are shown in Angstroms.

The classification task reorganizes the latent space to empha-
size biochemically-important structural features. Dimension-
ality reduction algorithms are only helpful for identifying
differences between two classes of data if the two classes of data
are separated in the latent space. Unsupervised autoencoders
learn a latent representation of data that focuses on large geo-
metric variations, so structures with large geometric differences
are separated, while structures with subtle differences are close
together. As a result, if biochemical differences between protein
variants are related to subtle geometric changes, then the variants
will be highly overlapping in the latent space and thus, the
autoencoder will fail to provide a useful way to distinguish var-
iants. We hypothesized that augmenting a standard autoencoder
with a classification task, as with DiffNets, would reorganize the
latent space to highlight relevant differences between datasets,
even if they are subtle structurally.

In order to test this hypothesis, we applied DiffNets and
autoencoders to a set of variants of the enzyme TEM p-lactamase.
B-lactamase is an enzyme that confers bacteria with antibiotic

resistance by metabolizing B-lactam drugs like penicillin®’.
Bacteria are quick to evolve new variants of TEM that have
activity against new drugs, but these mutations are often
destabilizing, so compensatory mutations evolve to restore
stability38-40. M182T is one stabilizing mutation that frequently
appears in clinical isolates*!42, While crystal structures of the
wild-type and M182T proteins had been solved, comparing them
did not provide a conclusive mechanism for stabilization capable
of predicting the impact of other variants. Recently, our group
combined simulations, NMR experiments, and x-ray crystal-
lography to demonstrate that compaction of helix 9 is a structural
signature that distinguishes more stable variants (like M182T)
from less stable ones (Fig. 2). This compaction is associated with
stronger h-bonds along helix 9 that stabilize this secondary
structure element. Helix 9 is part of a crucial interdomain
interface, so stabilizing it ultimately stabilizes the native state
relative to an intermediate where one domain is at least partially
unfolded. Importantly, this helix compaction includes distance
changes of less than 1 Angstrom between hydrogen bonding
partners. Given that this is geometrically subtle compared to
nearby loop motions, we expect that compact and extended helix
states will not be well separated in the latent space of a standard
autoencoder. However, we do expect that a DiffNet trained to
classify compact and extended helix states will learn a latent space
that separates these states.

To evaluate if the DiffNet classification layer alters the latent
space in a way that helps identify differences between two classes
of data, we compared the latent space of DiffNets to the latent
space of unsupervised autoencoders after training on a dataset
that includes two classes of data distinguishable by a subtle
difference in helix 9 compaction. From the original set of
650,210 structures (from wild-type and M182T simulations) we
curated a dataset of 178,402 simulation frames from wild-type
and M182T simulations where half of the frames have a compact
helix 9 (helix compaction criteria described in Methods) and half
have a more extended helix. Then, we trained DiffNets and
unsupervised autoencoders using a split architecture described in
the methods and visualized in Fig. 1b. The DiffNets and
autoencoders we trained were identical, except the DiffNet has
an additional output layer such that it has to classify helix 9 as
compact or extended in addition to reconstructing protein
structures. The classification labels are not updated with
expectation maximization in this case. This dataset was selected
specifically to evaluate how the classification task of the
DiftNet alters the dimensionality reduction compared to a
standard autoencoder. In a normal setting we would not have a
priori knowledge about the importance of helix 9 compaction.
However, this is an important test to determine if adding a
classification task can reorganize the latent space to highlight
differences between datasets, which is a property that DiffNets
will ultimately need to identify differences between variants.

Requiring DiffNets to perform a classification task in tandem
with dimensionality reduction successfully reconfigures the latent
space to disentangle compact helix configurations from more
extended helix configurations. First, we note that DiffNets and
unsupervised autoencoders have similar ability to reconstruct
protein structures (~1 Angstrom error - see Fig. 3) using as few as
three latent variables and as many as fifty, which is in line with
another study reporting autoencoder reconstruction error?’. To
compare latent spaces, we analyze a split architecture that has
twenty-five latent variables including three in encoder A (which
receives input including helix 9 and performs the classification
task in the DiffNet) and twenty-two in encoder B (takes input
from the rest of the protein). This architecture provides a low
reconstruction error (<1 Angstrom) and few enough latent
variables so that all dimensions in encoder A’s latent space can be
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Fig. 3 Autoencoders and DiffNets can both compress protein structures and then reconstruct them. a Reconstruction error plots showing the root-
mean-square deviation (RMSD) between a protein structure from simulation and the corresponding protein structure generated by unsupervised
autoencoders (yellow) or DiffNets (blue). One of every ten structures from wild-type and M182T simulation data was used (n = 65,210) and the standard
deviation is shown with error bars. b Structure representing the difference between a structure generated by the DiffNet (blue) vs. the actual conformation

from simulation (gray) when training with 3 latent variables.

visualized. In the unsupervised autoencoder, simulation frames of
compact and extended helices are overlapping in encoder A’s
latent space (Fig. 4a). This demonstrates that training an
unsupervised autoencoder on two classes of data does not
necessarily yield a latent representation that provides any insight
into how the two classes of data are different. To explore this
point further, we held the autoencoder’s latent space constant and
then trained it to classify whether a structure has a compact or
extended helix 9 (i.e, performed logistic regression). The
resulting receiver operating characteristic (ROC) curve, which
measures classification performance, shows a classification
performance similar to random guessing (area under the curve
[AUC] =0.54) providing further evidence that the latent
representation does not help distinguish the two classes of data.
In contrast, the DiffNet encoder A latent space clearly separates
the two classes of data (Fig. 4a) and has excellent performance
classifying compact and extended helix states (AUC=0.91,
Fig. 4b). This result demonstrates that adding a classification
component to the learning task provides a powerful means to
learn a low-dimensional representation that highlights crucial
differences between datasets. It follows that DiffNets trained with
a classification task that must predict a biochemical property
should learn a low-dimensional representation of data that
highlights structural features that are predictive of biochemical
differences between protein variants.

Self-supervised DiffNets learn structural signatures associated
with protein stability. While the classification task can help
DiffNets learn a useful dimensionality reduction, realizing this
potential is non-trivial because we know the biochemical prop-
erties of variants (e.g., their entire structural ensembles) but not
individual structures. The simplest approach to providing these
classification labels would be to assign ones to structures from
simulations of variants with the biochemical property of interest
and zeros to structures from simulations of variants without the
property. However, it is likely that variants fall on a continuum
rather than having a biochemical property or not, that their
conformational ensembles overlap, and that only a subset of
conformations are relevant for determining the property of
interest.

This problem is similar to multiple instance learning. During
multiple-instance learning, learners are given bags of training
examples where each bag is labeled negative, indicating that the
bag contains all negative examples, or positive, indicating that

there are at least some positive examples in the bag. The learner
then must figure out how to label all of the individual instances as
positive or negative by identifying features that are consistent in
positive bags, but absent in negative bags. This is similar to our
situation where we know the biochemical property of each
protein variant (i.e., negative bag or positive bag), but we do not
know if a given structural configuration is associated with a
biochemical property, or inconsistent with a biochemical
property.

We propose a self-supervised approach for learning the
relationship between individual structures and the biochemical
property of interest using an iterative expectation maximization
algorithm based on work from Zaretski et al*3. Expectation
maximization is a statistical method that allows the parameters of
a model to be fit, even when the outputs of the model cannot be
observed directly in the training data* (i, when they are
hidden). In our case, the hidden variables are labels for each
structure that specify the probability that a structure is associated
with the biochemical property of interest. These labels are initially
set to ones for all structures from variants with a given
biochemical property (e.g., more stable P-lactamase variants)
and zeros for variants without that property (e.g., variants with
lower stabilities). Then the expectation maximization algorithm
iteratively alternates between a maximization step and an
expectation step to identify a self-consistent set of labels. During
the maximization step, a DiffNet is trained to predict the current
labels for each structure. Then, the expectation step refines the
training labels by computing the expected values of the labels, y,
using the output from the DiffNet, J, conditioned on constraints
about what fraction of structures from each variant we expect to
be associated with the property of interest. This constraint
provides a way to enforce that more high probability values are
assigned to structures from variants with the biochemical
property. The expectation is the probability-weighted average of
all binary realizations of binomial distributions parameterized by
¥, excluding binary realizations that do not meet the constraint.
Formally, we update training labels as,

J’i:E[)A’ASLS)A’rSSU} (1)

. PSS, —1<y, —9,<S,— 1)
= P(y,is1)* L : 2
(iis1) ( P(S,<7,<Sy) @

where y, is the updated label for each individual frame, y; is the
DiffNet output, S; and S, are the lower and upper bounds on

| (2021)12:3023 | https://doi.org/10.1038/s41467-021-23246-1 | www.nature.com/naturecommunications 5


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

DiffNet

a  Autoencoder

« compact
« extended
.--- decision boundary

[ 4
r'd
e
'
7
4
7
7
,/
3 s
o /54
]
>
P
0
o
a
(4]
2
= Chance ==-
/ + 1 std. dev.
&7 DiffNet (AUC = 0.91 £ 0.01) ==
0.0+ Autoencoder (AUC = 0.54 + 0.07)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Fig. 4 Adding a classification component to the learning task (as in
DiffNets) results in a latent representation that separates different
datasets more clearly than an unsupervised autoencoder. a Simulation
frames that have a compact helix (red) and an extended helix (black) are
projected onto the three-dimensional latent space learned by an
unsupervised autoencoder (left) and a DiffNet (right). The decision
boundary (black dotted line) indicates the plane that each neural
network uses to separate compact helix states from extended helix states.
b Receiver operating characteristic (ROC) curve showing the average
classification performance of the unsupervised autoencoder (dark yellow)
and the DiffNet (dark blue) as well as the performance for each of the 5
folds of cross validation (faded dotted lines). Mean area under the ROC
curve (AUC) is shown in the bottom right corner with the standard
deviation across the 5-folds of training.

how many conformations in a batch are associated with the
biochemical property, J, is the sum of the binary outcomes of a
batch which contains conformation i, P(S; — 1<y, — y,<Sy — 1)
is the probability that the number of conformations in a batch is
within the limits if conformation i is ignored, and P(S; <y, <Sy)
is the probability that the number of conformations in a batch is
within the limits, including conformation i. Ultimately, the
desired outcome is that the expectation maximization algorithm
redistributes training labels from all 0s and 1s for simulation
frames of variants without and with a biochemical property,
respectively, to values that indicate the probability that a given
structural configuration is associated with the biochemical
property of interest. This mechanism is self-supervised since the

training labels are learned by the algorithm, rather than explicitly
curated.

To test this approach, we trained a self-supervised DiffNet to
identify structural preferences that distinguish two highly stable
B-lactamase variants (M182T and M182S) from two less stable
variants (wild-type [WT] and M182V). In this case, the DiffNet
receives no a priori information about features, like helix 9
compaction, that are associated with increased stability in M182T
and M182S. If self-supervision of DiffNets works as expected,
then training should produce a latent space where it is easy to
identify the structural features that are associated with the
stability of M182T and M182S, relative to WT and M182V. For
example, we expect to see structural configurations with a
compact helix 9 in one region of the latent space and structures
with a more extended helix elsewhere. Beyond helix compaction,
DiftNets may even capture additional structural features that were
missed in our previous manual analysis. To evaluate if the DiffNet
learns these biochemically relevant structural differences between
variants, we trained a DiffNet on 6.5 ps of simulation data for
each variant: M182T, M182S, WT, and M182V. All frames from
M182T and M182S (highly stable variants) were initially assigned
classification labels of 1, and simulation frames from M182V and
WT were initially assigned 0s. During the expectation max-
imization procedure, we calculate the expected values (updated
labels) conditioned on the constraint that 0-30% of less stable
variants frame are likely to be stabilizing, and 60-90% of frames
for highly stable variants. In general, it should be sufficient to base
bounds on qualitative a priori knowledge rather than precise,
quantitative information. In this case, we chose these bounds as a
way to allow overlap between ensembles, but still provide a clear
signal to distinguish more and less stable variants. Empirically, we
find that DiffNets are robust across a wide range of bounds
(Supplementary Fig. 1).

Expectation maximization aids the DiffNet in learning a low-
dimensional representation that accurately identifies that helix 9
compaction is associated with highly stable variants. First, we
trained two supervised autoencoders (one with and one without
expectation maximization) and compared the distribution of
output classification labels. Without expectation maximization,
almost all structures from more stable variants have output labels
close to 1, and structures from less stable variants have output
labels close to 0 (Fig. 5a). This is at odds with the fact that there is
structural overlap between the ensembles. It indicates that the
supervised autoencoder essentially memorizes which ensemble
each structure comes from instead of learning a useful association
between individual structures and stability. In contrast, when
expectation maximization is applied the output labels span the
full spectrum from 0-1 for each variant (Fig. 5b), which is
consistent across a wide range of expectation maximization
bounds (Supplementary Fig. 1). Moreover, as the labels increase
from 0 to 1, helix 9 compaction smoothly decreases, which
indicates that DiffNets learn a latent space with a continuum of
structures that are less/more closely associated with stability
(Fig. 5¢). Without expectation maximization, the extreme labels
(i.e, 0,1) track well with helix stability, but structures labeled
between 0.1 and 0.9 do not show a clear trend of helix
compaction.

Using DiffNets to predict on a variant outside of training
provides further support that expectation maximization aids in
learning structural features associated with stability. We com-
pared each model’s ability to predict the stability of a less stable
variant not seen during training (M182N), and we find that this
prediction is improved when expectation maximization is applied
(Supplementary Fig. 2). This suggests expectation maximization
helps DiffNets hone in on biochemically relevant structural
features, and that DiffNets could be used as a predictive tool.
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Fig. 5 Self-supervision improves the DiffNet's ability to organize
structural configurations based on their biochemical property. Histogram
showing DiffNet output labels across all simulation frames from M182T and
M182S (red - highly stable variants in training set) versus WT and M182V
(gray - less stable variants in training set) for a supervised autoencoder (a)
and a self-supervised autoencoder (b). ¢ Three key hydrogen bond lengths
in helix 9 as a function of the DiffNet output label (n =1,300,420) (yellow -
supervised, black - self-supervised), which ranges from zero for structures
associated with low stability to one for structures associated with high
stability. The distances are between the carbonyl carbon of the ith residue
and the nitrogen of the (i + 4)th residue. Standard error bars are not visible
since the standard error is smaller than scatter points.

b

Interface packing

Fig. 6 Visualization of the features that DiffNets find important for
increased stability of M182T and M182S variants. a Crystal structure of
TEM B-lactamase (PDB ID: 1JWP) overlaid with dotted lines that indicate
distances between two atoms that change in a way that is strongly
correlated with an increased DiffNet output label. Red indicates the atoms
move closer together as the output label increases, blue indicates atoms
moving away from each other. The mutated residue is highlighted with a
yellow sphere. Protein atoms are colored cyan if they are near the mutation,
which indicates that they were included in the classification task and
considered for the distance correlation calculation. b Rotated inset of

a showing DiffNet predicted packing at the interface of helix 9 and the
adjacent p-sheet. Residues with chemical-shift perturbations in M182S
relative to wild-type are shown in deep olive.

However, we caution that autoencoders will fail anytime they are
applied to data that is highly dissimilar from the training set, so a
DiffNet will not perform well on new variants that visit
conformations not visited in the training set. Future studies
would be necessary to optimize DiffNets for prediction and
should be evaluated against related methods such as by Riessel-
man et al. 4.

While many deep learning approaches are criticized for their
lack of interpretability, the DiffNet architecture provides
opportunities to understand what the network learned, which
provides biophysical insight. To automate DiffNet interpretation,
we measured all inter-atom distances within 1nm of the
mutation using 2000 cluster centers calculated from all simula-
tions and then measured the linear correlation between each
distance and the DiffNet output label. We plot the top 1% of
distances correlated with the DiffNet output label to visualize the
conformational changes that the DiffNet views as important for
distinguishing stable variants from less stable variants. Encoura-
gingly, the distance correlations strongly point to helix 9
compaction as an important feature of more stable variants
(Fig. 6). While the helix compaction is striking, DiffNets also
captured other trends that our previous computational analyses
did not detect. For example, our NMR data suggested that the
packing between helix 9 and adjacent PB-sheet differs in more
stable vs less stable variants®, but our computational analysis did
not detect a clear trend. On the same simulation dataset, the
DiffNet clearly learns that this interface becomes more tightly
packed for more stable variants (Fig. 6). Specifically, the DiffNet
analysis suggests more stable variants have tighter packing at the
helix 9 and {-sheet interface (Fig. 6b). Often times the important
features that distinguish protein variants can be complicated and,
therefore, easily missed even with months of analysis. DiffNets
can learn complicated features and help automate the process of
identifying biochemically relevant structural features that distin-
guish protein variants.
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DiffNets works for other proteins and more divergent
sequences. In order to explore the broad applicability of DiffNets,
we also trained a self-supervised DiffNet to identify structural
features that distinguish high duty myosin motor domains from
low duty myosins. Myosins are a ubiquitous class of motor pro-
teins that perform an extraordinary diversity of functions despite
sharing a common mechanochemical cycle?°. In order to perform
roles as diverse as muscle contraction and intracellular transport,
myosins have precisely tuned their duty ratios, or the fraction of
time a myosin spends attached to actin during one full pass
through its mechanochemical cycle. Recent work from Porter
et al.#” suggests that the conformational ensemble of the active
site P-loop encodes duty ratio through the balance of nucleotide
favorable and unfavorable states. Specifically, low duty motors
have an increased propensity to adopt a P-loop “up” state, where
the S180 carbonyl group sterically occludes nucleotide binding,
whereas high duty motors favor a “down” state, where the P-loop
is nucleotide compatible (see Fig. 7b).

We trained a DiffNet using molecular dynamics simulation
data from the active sites of four low duty motors and four high
duty motors to see if we could recapitulate the trend between P-
loop dynamics and duty ratio (Fig. 7a). Importantly, this test case
is especially challenging because it includes eight different
proteins with a low degree of sequence conservation in the area
of interest (i.e., 34% of residues were perfectly conserved within
the training area). Low duty motors were given an initial label of
zero and high duty motors were initially given a label of one.

A DiffNet trained to distinguish high and low duty myosin
motors substantiates previous work that identified P-loop

INS

7
U

e\ 17
N 2 ‘

at

dynamics to be important for distinguishing these myosins. To
determine if a DiffNet captures the importance of P-loop “up”
and “down” states, we examined structures with low and high
DiftNet output labels (i.e., predicted low and high duty
respectively) from a single isoform. We saw a consistent trend
in the orientation of the S180 carbonyl group, where structures
with high DiffNets labels are in the “down” orientation and
structures with low labels are in the “up” orientation (see Fig. 7b).
This indicates that the DiffNet correctly learned that high-duty
motors are more likely to be in the “down” state and vice-versa.
To more precisely quantify this trend, we examined the
correlation between DiffNet output labels and nucleotide
compatibility (as defined previously*’) for all frames. We find
that as the DiffNet output labels increase (i.e., shift from low duty
to high duty), there is a concurrent increase in the ratio of
nucleotide favorable:unfavorable states (Fig. 7c).

Automated interpretation of a DiffNet captures the importance
of P-loop dynamics and suggests other order parameters that may
distinguish high and low duty myosins. Similar to Fig. 6, we
calculate the correlation between interatomic distances and
DiffNet output labels for all 139,129 distances around the active
site (Fig. 7a) and then project the top 100 correlated distances
onto the structure (Fig. 7d). This analysis finds 78 distances
between the P-loop and the loop connecting the third beta sheet
with the SH2 helix (referred to as the P3-SH2 loop), again
highlighting that the DiffNet learns that P-loop dynamics are
important for discriminating high and low duty motors. We
compared this result to a model trained without expectation
maximization and find that expectation maximization improves
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Fig. 7 DiffNets capture the importance of P-loop motions in distinguishing high and low duty myosin motor proteins. a Structure of a myosin motor
protein (PDB ID: 4PAQ) showing the DiffNet classification region (cyan), the P-loop (magenta), and Switch-Il (Orange). b Twenty states predicted by the
DiffNet as high duty (teal) and low duty (dark gold). Predicted high duty states are mostly in a nucleotide compatible, P-loop “down” conformation and
vice-versa for predicted low duty states. ¢ Percentage of nucleotide favorable (teal) and unfavorable (dark gold) states as a function of the DiffNet output
label, measured with 10 equally spaced bins with labels spanning 0-1. Most structures with low Diffnets labels are nucleotide unfavorable, and vice-versa.
d Inset of the myosin active site. Dotted lines indicate distances between two atoms that change in a way that is strongly correlated with an increased
DiffNet output label. Red indicates the atoms move closer together as the output label increases, blue indicates atoms moving away from each other.
e Cumulative distribution function showing the distance between S180 (P-loop) and T682 ($3-SH2 loop). Probabilities come from a previously published
MSM#47. This distance clearly separates high and low duty motors (green and light brown, respectively) as predicted by the DiffNet in d.
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the quality of this analysis. Specifically, changes in Ser180 are
strongly detected when expectation maximization is applied, but
without expectation maximization these changes are not detected
at all (Supplementary Fig. 3). The DiffNet also infers that high
duty motors are more likely to occupy states where the P-loop is
near to the p3-SH2 loop, and indeed this finding is confirmed
using previously published Markov State Models of the motor
domains (see Fig. 7e). Since the B3-SH2 loop is below the P-loop,
this provides further evidence that the DiffNet is correctly
learning that high duty motors prefer the “down” state. While this
order parameter is the predominant feature of this analysis, the
DiffNet suggests that other distances may be important for
distinguishing high and low duty motors. In particular, there are
two residues on switch-II with distances that are strongly
correlated with the DiffNet label indicating that conformational
changes in switch-II may be important for determining the duty
ratio, which is consistent with previous findings*3 (see Supple-
mentary Fig. 4).

Discussion

We have introduced DiffNets, a deep learning framework for
identifying the structural signatures that are predictive of bio-
chemical differences between protein variants from molecular
dynamics simulations. Such simulations contain valuable infor-
mation about the structural mechanisms that determine proteins’
biochemical properties. However, extracting this insight is often
difficult because of factors like the high dimensionality of the
spaces involved and overlap between the structural ensembles for
different variants. Our results suggest that self-supervised Dift-
Nets learn a low-dimensional latent representation of protein
structures that separates them based on their association with
biochemical properties, such as higher or lower stability. This
success relies on two key innovations. First, performing dimen-
sionality reduction simultaneously with a classification task helps
yield a latent representation that organizes protein structural
configurations based on their association with biochemical
properties. Second, challenges with labeling each structure with a
biochemical property can be overcome using an expectation
maximization scheme inspired by multiple instance learning.

As a proof of principle, we demonstrated that DiffNets auto-
matically identify structural changes that explain biochemical
differences between variants in several systems including (-
lactamase and myosin proteins. Success identifying helix 9
compaction (<1 A) as an important distinguishing factor between
B-lactamase variants demonstrated that DiffNets finds bio-
chemically relevant structural features even if they are geome-
trically subtle relative to other structural fluctuations in the
protein. Success identifying the importance of P-loop dynamics
for determining the duty ratio across myosin isoforms demon-
strated that DiffNets is generalizable to large proteins (~800
residues) with low sequence conservation. Looking ahead, we
expect the same architecture to be applicable to other perturba-
tions, such as post-translational modifications or the presence/
absence of a binding partner.

While these results are promising, future work can be done to
expand the utility of DiffNets further. For example, the DiffNet
architecture is not translationally, nor rotationally, invariant,
which means the results depend on the quality of the initial
alignment of simulations. Future work exploring equivariant
architectures may improve DiffNets. Additionally, the current
study included an abundance of data, so there were no optimi-
zations for working with small datasets. It is yet to be seen how
well DiffNets performs on smaller (sub-microsecond) datasets.
Lastly, after training a DiffNet it is possible to use the model to
predict the biochemical property of a variant for which the

property has not been determined experimentally. Toward this
end, we showed that DiffNets accurately classified the stability of
a P-lactamase variant (M182N) that was not seen during the
training. However, accurate predictions will require that the
variants of interest have high conformational overlap, and future
studies are required to optimize a model for this task.

Methods

Molecular dynamics simulations. All molecular dynamics simulation data were
generated in previous manuscripts by Zimmerman et al.”> and Porter et al.*’ Briefly,
all simulations were run with Gromacs 5.1.1 at a temperature of 300 K using the
AMBERO3 force field with explicit TIP3P solvent***0. B-lactamase simulations
were initialized from the TEM-1 B-lactamase crystallographic structure (PDB ID:
1JWP)3 and ran at 300 K using the AMBERO3 force field with explicit TIP3P
solvent#%>0, Each variant, wild-type, M182V, M182T, M182S, and M182N was
simulated for 6.5 s including 4 ps of FAST-RMSD adaptive sampling®! and 2.5 ps
of conventional sampling. Conformations were stored every 20 ps. Myosin simu-
lations were performed mostly on Folding@Home>? to obtain ~2 ms of total
sampling across four low duty (MYH13, MYH7, MYH10, and MYO1B) and four
high duty motors (MYO5A, MYO6, MYO7A, and MYO10), where the initial
structures were built from homology models in SWISS-MODEL?? using the
4PA0°* as a guide template structure.

DiffNet model. DiffNets are neural networks with a supervised autoencoder
architecture (as shown in Fig. 1). These models take as input a vector of features
that describe a protein structural configuration and output a score which
indicates how closely a structure is associated with a certain biochemical property,
as well as, a vector that matches the input vector (i.e., reconstructs a protein
structure).

EM algorithm. The goal of the algorithm is to find a vector K, that maps each
structure to a value between 0 and 1 that maps to the biophysical property of the
structure (e.g., stability). We initialize K with all 1s for structures from variants
with the biophysical property of interest, and all 0s for structures from variants
without the biophysical property of interest. Then, we alternate between M- and E-
steps to update the vector K. First, the M-step fits a neural network using K as
classification targets. Next, the neural network outputs a vector of scores for
structures, Y. Then, we apply an E-step to update the values in K. Specifically, we
compute the expected value of each structure where we treat a set of structures as
binomial random variables parameterized by Y, conditioned on user-defined
bounds on the number of successes (i.e., structures with the biochemical property)
for each variant. The expected values are computed as the probability-weighted
average of all binary realizations of binomial distributions parameterized by Y that
are within the user-defined bounds. These expected values provide an updated K,
allowing us to repeatedly iterate between M- and E- steps. We refer the reader to
the Supplementary Information and our previous work for a more thorough dis-
cussion of the algorithm.

Featurization. Simulation data was preprocessed before becoming input to the
DiffNets. Simulation trajectories and the original crystallographic structure (PDB
ID: 1JWP) are stripped down to the XYZ coordinates of the protein backbone
without carbonyl oxygens (C, CA, CB, and N). Then, the trajectories are centered at
the origin and aligned to the crystallographic structure. Next, we follow a proce-
dure similar to Wehmeyer and Noe®! to mean-shift the XYZ coordinates to zero,
followed by whitening. First, we mean shift,

Nt
xmean—ﬁee — Z x; — X (3)

i=1

where x4~/ is the mean-shifted trajectory of XYZ coordinates, x; is a single
frame with XYZ coordinates, X is the mean of the XYZ coordinates across all
trajectories, and N, is the number of frames in all trajectories.

Next, we whiten the data,

X = C(;U%xmean—free (4)

where X is the whitened trajectory of XYZ coordinates and C,, is the covariance
matrix for the XYZ coordinates. Whitening decorrelates the inputs and adjusts
their variance to be unity. After whitening, we use one out of every ten simulation
frames for each epoch of DiffNet training. In practice, whitening and unwhitening
of the data is performed on the input XYZ coordinates directly in the DiffNet with
frozen (untrainable) weights. For myosin, we subsampled the data to use only one
of every ten simulation frames.

Classification targets. To train the model we need a target for each protein
structural configuration. We assign initial, binary targets based on the observed
biochemical property (e.g., 1 s for more stable variants, 0 s for less stable variants).
Our assumption that individual configurations can be mapped to biochemical
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properties is consistent with studies that attribute specific structural states to a
biochemical property (e.g., an enzyme primed for catalysis) and designate other
individual structural states as being incompatible with a biochemical property (e.g.,
an enzyme in an inactive state). Next, we iteratively update the initial labels with an
expectation maximization algorithm (described above). This relaxes the labels such
that structural configurations are on a continuum. This effectively turns the pro-
blem into a regression problem instead of a classification problem, which is
consistent with the observation that most biophysical observables are on a
continuum.

Neural network training. We trained DiffNets with three loss functions to
minimize protein reconstruction error (/p,,,), minimize feature classification error
(7 ciass)» and minimize the correlation of latent space variables (Z,,,).

fDiﬂNel = /Recun + /Class + /Corr (5)

The reconstruction loss term attempts to tune the network weights to properly
reconstruct the original XYZ coordinates of the protein. This loss combines an
absolute error (L1), which funnels reconstructions to the proper XYZ coordinates,
and a mean-squared error (L2) to strongly discourage outliers. Explicitly,
1N 1N

=N > an[lxij = Xl + (x5 — X5 ’] ©)

3
Recon =1 Nn =

where N, is the number of output nodes (all XYZ coordinates), Ny, is the number of
examples in a training batch, x;; is a target value (actual XYZ coordinate), and %;; is
the output value from the DiffNet.

The classification error is a binary cross entropy error that penalizes
misclassifications by the latent space. This classification loss attempts to constrain
the latent space to learn a dimensionality reduction that can also classify a
biophysical feature. Explicitly,

1N R N
? Class = m[;yi *log(;) + (1 —y;) +log(1 — ;) @)

where N, is the number of examples in a training batch, y; is the target value, a
binary value indicating if a simulation frame has a specific feature or not, and y, is
the output of the classification layer by the DiffNet.

Finally, we include a loss function to minimize the covariance between latent
space variables. This loss takes the form of

Z Corr = Z COV(Zi, Z')Z
c P j (®)

where Cov(z;, z;) is the covariance matrix of the latent vector, Z, across all N,
samples in a training batch. We reason that preventing redundancy in latent
variables should maximize the amount of information one can gain in a small
number of variables. Ideally, this sets us up to use just a few latent variables and still
have a rich amount of information. With fewer latent variables, models are
generally more interpretable.

Our training procedure uses several training iterations to progressively build in
hidden layers of the DiffNet. First, we train a minimal version of a DiffNet.
Explicitly, the encoders have an input layer and a reduction layer with a four-fold
reduction in variables. There is no further reduction to a bottleneck layer. Instead,
the decoder takes the reduction layer as input and passes it to an output layer.
Training this simplified autoencoder is an easier task than training a full DiffNet
because the dimensionality reduction it performs is modest. It has ~an order of
magnitude more dimensions to explain the original data compared with a true
bottleneck layer. We reason that this can generate useful priors for what the
reduction layer should capture. In our second pretraining procedure, we freeze
those priors and add the bottleneck layer in to train the full DiffNet. Therefore, this
second pretraining step concentrates its representational power on tuning how to
properly reduce from the reduction layer to the bottleneck layer. Finally, we
unfreeze the priors and train the full DiffNet to polish all weights. Each of these
three procedures undergoes 20 training epochs. In the self-supervised setting,
classification labels are updated using expectation maximization after each
training epoch.

All training was performed in PyTorch 1.1°°. Training on ~120,000 simulation
frames of B-lactamase takes under one hour on a single AMD Vega 20 GPU.
Training with expectation maximization approximately doubled the training time
for DiffNets trained on TEM. We used the Adam optimizer with a learning rate of
0.0001 and a batch size of 32.

We performed limited hyperparameter tuning to arrive at our final models. We
found that the DiffNet performance was robust across a wide range of latent
variables (Fig. 3) and expectation maximization bounds (Supplementary Fig. 1,
Fig. 5b). To choose a final number of latent variables, we chose the minimum
number where reconstruction error no longer showed qualitative improvement.
Additionally, we saved a trained model after every epoch of training and ultimately
used the model that showed the best reconstruction performance on a validation
set that contained 10% of the data.

Reconstruction experiment. To analyze DiffNet reconstruction error (Fig. 3), we
trained on five architectures where we varied the numbers of latent variables. All

architectures split the input (as in Fig. 1b) such that any atom (C, CA, N, CB)
within 1 nm of residue 182 (source of single point mutation — colored cyan in
Fig. 6) was included in encoder A, while the rest of the protein was included in
encoder B. Encoder A reduced down to 1, 2, 3, 5, and 10 latent variables, while
encoder B reduced down to 2, 3, 7, 20, and 40 latent variables. After training, we
use the neural networks to reconstruct the protein structure from 1 of every

100 simulation frames and compute its root-mean squared deviation from the
actual structure obtained via simulation.

Classification labels. To provide classification labels for Fig. 4, we designated
simulation frames as “compact helix” or “extended helix” based on a previous
manuscript that identified three key hydrogen bond distances in Helix 9 that
distinguish stabilizing variants from nonstabilizing variants (Res 182-186, Res 183-
187, and Res 186-190)°. Specifically, we label helix 9 compact if the distance
between the backbone nitrogen and the carbonyl oxygen is less than 4.2 Angstroms
for all residue pairs listed, and we label it extended otherwise.

p-lactamase expectation maximization experiment. When training on §-
lactamase with expectation maximization (Figs. 5 and 6) we trained a split
architecture DiffNet consisting of 2 encoders and 2 latent spaces (as visualized in
Fig. 1). The input to encoder “A” is all XYZ coordinates within 1 nm of residue
182 (1 nm region around the mutation). The input to encoder “B” is the XYZ
coordinates from the rest of the protein. These encoders reduce the input to 4
and 26 latent variables, respectively (30 total latent variables split proportionally
into latent A and latent B based on the number of atoms input into each
encoder). After training, we applied the trained DiffNet to all simulation data to
obtain DiffNet output labels. These output labels can be thought of as a proxy for
latent A (region around the mutation) as the output label is simply a linear
combination of the values in latent A (then scaled between 0 and 1 using the
PyTorch sigmoid activation function). We bin all structures into 10 equally
spaced bins from 0-1 based on their DiffNet output label. Then, we measure the
average distance for Res 182-186, Res 183-187, and Res 186-190 in each bin
(Fig. 5a). To find distance changes that are correlated with changes in the
DiffNet output label (as shown in Fig. 6), we first cluster the simulation data into
2000 clusters using a hybrid k-centers and k-medoids approach with our open-
source python package, Enspara®®. Then, we enumerate all possible distance
pairs between atoms in encoder A (i.e., within 1 nm of the mutation). For each
distance pair, we perform a linear regression between the distance and the
DiffNet output label across all 2000 cluster centers. We then select the distance
pairs with the highest correlation coefficients (top 1%) and visualize them in
PyMol (Fig. 6).

Myosin expectation maximization experiment. When training on myosin

(Fig. 7) we used an architecture with a single encoder (i.e., not split) that received
C, CA, N, and CB atoms as input within a 2.25 nm radius around the P-loop
(specifically residue S180, Myh7 numbering). We used 50 latent variables. All
frames from low duty motors were initially assigned classification labels of 0, and
simulation frames from high duty motors were initially assigned 1s. During the
EM procedure, we set bounds of 10-40% for low duty motor frames and 60-90%
for high duty motor frames. To find distance changes that are correlated with
changes in the DiffNet output label, we copied the scheme described in the pre-
vious section. To identify P-loop orientations with high/low DiffNet labels, we
selected the 10 structures with DiffNet labels closest to 0.03 and 0.7 from a single
isoform (Myh7). To calculate the cumulative distribution function in Fig. 7e, we
used a previously published MSM. Specifically, for each cluster center in the MSM,
we measured its distance and weighted the distance by its equilibrium
population?’. Lastly, for Fig. 7c, we grouped structures as nucleotide favorable/
unfavorable as defined in a previous manuscript?’.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The datasets are not publicly deposited because they are several terabytes in size. The
datasets generated during and/or analyzed during the current study are available from
the corresponding author on reasonable request. We expect that it should take several
business days to share the data upon a particular request. Once shared, we will not
enforce any limitations for how the data may be used.

Code availability
Data normalization and DiffNets training with, or without, expectation maximization is
freely available on GitHub at https://github.com/bowman-lab/diffnets.
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