Fig. 1: Human DCM is characterized by decreased myofilament function and impaired sarcomere protein turnover. | Nature Communications

Fig. 1: Human DCM is characterized by decreased myofilament function and impaired sarcomere protein turnover.

From: Cardiomyocyte contractile impairment in heart failure results from reduced BAG3-mediated sarcomeric protein turnover

Fig. 1

a Skinned myocyte force-calcium relationship from human nonfailing (NF) and dilated cardiomyopathy (DCM) cardiomyocytes; n = 19 NF from 6 patients, 41 DCM from 12 patients. b, c Summary data for myocyte Fmax (b) and EC50 (c) corresponding to the force-calcium graph in a. d Western blot for ubiquitin in the NF and DCM left ventricle (LV) myofilament fraction; image is representative of 9 NF samples and 21 DCM samples. e Ubiquitin signal normalized to total protein; n = 9 NF, 21 DCM. f Immunofluorescence image of a human LV cardiomyocyte immunostained for ubiquitin and oligomer A11; ×63 magnification, scale bar = 10 µm; image is representative of the 16 images acquired. g Proteomics paradigm for ubiquitinated peptide enrichment. h Heatmap of the top 20 ubiquitinated proteins identified by LC-MS/MS for NF and DCM human patients normalized to total peptide input; scale bar = fold change increase relative to NF, darkest red color denoting greatest fold change. i–n Spectral count data for ubiquitinated peptides normalized to total peptide input for myosin regulatory light chain (i), desmin (j), filamin-C (k), α-actinin (l), tropomyosin (m), and myozenin-2 (n); n = 6 NF, 5 DCM. All data are presented as mean ± SEM and were analyzed by two-tailed t-test.

Back to article page