Fig. 3: Field-particle correlations \({C}_{{E}_{z}}({v}_{z})\) and \({C}_{{E}_{z}}({v}_{z},{v}_{\perp })\). | Nature Communications

Fig. 3: Field-particle correlations \({C}_{{E}_{z}}({v}_{z})\) and \({C}_{{E}_{z}}({v}_{z},{v}_{\perp })\).

From: Laboratory measurements of the physics of auroral electron acceleration by Alfvén waves

Fig. 3

Results from a LAPD experiment, b, c AstroGK simulation, d, e an analytical Laplace-Fourier Transform solution of the z/λ evolution of \({C}_{{E}_{z}}({v}_{z})\), and g, f, h Liouville mapping. h is a re-plotting of (g) with axes for direct comparison with (a). Gyrotropic correlations \({C}_{{E}_{z}}({v}_{z},{v}_{\perp })\) in (b, f) are reduced to the parallel correlations \({C}_{{E}_{z}}({v}_{z})\) in (c, g) by integration over v. The parallel phase velocity vph is noted by a black vertical line on all plots. WWAD measurements are unavailable in the region bounded by vertical dashed lines. The dashed horizontal line in (d) identifies the slice re-plotted in (e, a) and corresponds to the z/λz location of WWAD measurements in the experiment. The AstroGK \({C}_{{E}_{z}}({v}_{z})\) (c), with a bipolar signature centered on vph, is comparable to the largest values of z/λz in (d). The analytical (e) and Liouville mapping (g) \({C}_{{E}_{z}}({v}_{z})\) include finite z/λ of the experiment and produce a bipolar signature below vph similar to (a) the experimental \({C}_{{E}_{z}}({v}_{z})\). Error bars in (a) represent the standard deviation. The black arrows represent the path of analytical and numerical analysis leading to closure in the interpretation of our experimental measurements.

Back to article page