Table 3 Classification results on LGG dataset.
Method | ACC | F1 | AUC |
---|---|---|---|
KNN | 0.729 ± 0.034 | 0.738 ± 0.033 | 0.799 ± 0.038 |
SVM | 0.754 ± 0.046 | 0.757 ± 0.050 | 0.754 ± 0.046 |
Lasso | 0.761 ± 0.018 | 0.767 ± 0.022 | 0.823 ± 0.027 |
RF | 0.748 ± 0.012 | 0.742 ± 0.010 | 0.823 ± 0.010 |
XGBoost | 0.756 ± 0.040 | 0.767 ± 0.032 | 0.840 ± 0.023 |
NN | 0.737 ± 0.023 | 0.748 ± 0.024 | 0.810 ± 0.037 |
GRridge | 0.746 ± 0.038 | 0.756 ± 0.036 | 0.826 ± 0.044 |
block PLSDA | 0.759 ± 0.025 | 0.738 ± 0.031 | 0.825 ± 0.023 |
block sPLSDA | 0.685 ± 0.027 | 0.662 ± 0.030 | 0.730 ± 0.026 |
NN_NN | 0.740 ± 0.039 | 0.756 ± 0.036 | 0.824 ± 0.036 |
NN_VCDN | 0.740 ± 0.030 | 0.771 ± 0.021 | 0.826 ± 0.031 |
MOGONET_NN (Ours) | 0.804 ± 0.025 | 0.811 ± 0.023 | 0.832 ± 0.029 |
MOGONET (Ours) | 0.816 ± 0.016 | 0.814 ± 0.014 | 0.840 ± 0.027 |