Table 3 Comparison of linear regression fits for different average Log Norm and Weighted Alpha metrics across 5 CV datasets, 17 architectures, covering 108 (out of over 400) different pretrained DNNs.
 | \({\mathrm{log}}\,\parallel \cdot {\parallel }_{F}^{2}\) | \({\mathrm{log}}\,\parallel \cdot {\parallel }_{\infty }^{2}\) | \(\hat{\alpha }\) | \({\mathrm{log}}\,\parallel \cdot {\parallel }_{\alpha }^{\alpha }\) |
---|---|---|---|---|
RMSE (mean) | 4.84 | 5.57 | 4.58 | 4.55 |
RMSE (std) | 9.14 | 9.16 | 9.16 | 9.17 |
R2 (mean) | 3.9 | 3.85 | 3.89 | 3.89 |
R2 (std) | 9.34 | 9.36 | 9.34 | 9.34 |
Kendal-tau (mean) | 3.84 | 3.77 | 3.86 | 3.85 |
Kendal-tau (std) | 9.37 | 9.4 | 9.36 | 9.36 |