Fig. 2: Comparison between phase gradient maximization and field minimization to obtain phase singularities. | Nature Communications

Fig. 2: Comparison between phase gradient maximization and field minimization to obtain phase singularities.

From: Engineering phase and polarization singularity sheets

Fig. 2

Both methods can be used to obtain phase singularities, but they produce different field behavior in terms of its real (blue) and imaginary (red) zero-isosurfaces. Yellow dots label the positions at which the field and phase gradients are optimized. Inset surface plots are the logarithmically scaled field intensities at z = 0 μm over the same XY domain. The z = 0 μm plane is indicated with the gray plane in each isosurface plot. a When the phase gradient in a specified direction is maximized, the two zero-isosurfaces align approximately tangentially and in the direction normal to that specified gradient. This produces a flat low field intensity structure along these aligned zero-isosurfaces. b Minimizing the field amplitude at a point to produce a singularity merely enforces a crossing of the zero-isosurfaces without any alignment, producing a 1D line singularity. c Simultaneously optimizing two nearby points with directed phase gradients can extend the range of the singularity sheet. d Minimizing the field amplitude at two points simultaneously does not guarantee alignment of the zero-isosurfaces and can instead produce multiple crossing lines, each producing a 1D line singularity.

Back to article page