Fig. 2: Quasistatic deformation cycles with odd micropolar elasticity.
From: Realization of active metamaterials with odd micropolar elasticity

a The state of the unit cell is tracked in the space of shear and bend. When a quasistatic closed path is traced out in this space, the unit cell performs work per unit volume that is proportional to the area times the modulus P. The z-displacement is provided in arbitrary units. b We numerically compute the work done for a clockwise (top) and a counterclockwise (bottom) path. The solid lines are predictions from the continuum theory, and the black dots result from finite element simulations of the unit cell. In the simulations, maximum amplitudes of bending and shearing are bmax ≈ 10−1 m−1 and smax ≈ 10−2, respectively. See Supplementary Note 1 for further details on the simulation.