Fig. 2: Improved adhesion force between TC-OCs and calcified tissue. | Nature Communications

Fig. 2: Improved adhesion force between TC-OCs and calcified tissue.

From: Engineered osteoclasts as living treatment materials for heterotopic ossification therapy

Fig. 2

a, b Schematic depicting the coculture assay with a conventional Transwell design for the detection of OC/TC-OC migration to ectopic calcified tissue. c, d Typical images showing migrated OCs/TC-OCs after 12 h of incubation (n = 3 independent samples/group). Bar, 200 µm. e, f Enlargement of c, d. Bar, 100 µm. g Quantitative analysis of migratory OCs/TC-OCs that were manually analyzed using Image J (n = 3 independent samples/group, ****p < 0.0001). h, i Representative images of OCs/TC-OCs with probes attached to calcified tissues (n = 5 independent samples/group). Bar, 100 µm. j, k Representative CLSM images of the probe after treatment with OCs/TC-OCs (n = 3 independent samples/group, tetracycline (green), nucleus (Hoechst 33258, blue)). Scale bar, 20 µm. l A representative force curve of OCs/TC-OCs with calcified tissue. m Quantitative analysis of the force between OC/TC-OC cell membranes and probes attached to calcified tissue. Force curves were calculated from the frequency-shift difference curves using the Sader–Jarvis method (n = 5 independent samples/group, ***p = 0.0006). n, o Schematic of the test design for the detection of OC/TC-OC migration to ectopic calcified tissue. Live/dead staining images of OCs/TC-OCs migrating to calcified tissue. Bar, 300 µm. p Quantitative analysis of migratory OCs/TC-OCs (n = 3 independent samples/group, **p = 0.0019). Data are represented as mean ± SD. Statistical comparisons were made using either unpaired (g, p) or paired (m) t-tests. Source data are provided as a Source Data file (**p < 0.01, ***p < 0.001, ****p < 0.0001).

Back to article page