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Evolutionary metabolic landscape from
preneoplasia to invasive lung adenocarcinoma
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Metabolic reprogramming evolves during cancer initiation and progression. However, thor-
ough understanding of metabolic evolution from preneoplasia to lung adenocarcinoma
(LUAD) is still limited. Here, we perform large-scale targeted metabolomics on resected
lesions and plasma obtained from invasive LUAD and its precursors, and decipher the
metabolic trajectories from atypical adenomatous hyperplasia (AAH) to adenocarcinoma
in situ (AIS), minimally invasive adenocarcinoma (MIA) and invasive adenocarcinoma (IAC),
revealing that perturbed metabolic pathways emerge early in premalignant lesions. Fur-
thermore, three panels of plasma metabolites are identified as non-invasive predictive bio-
markers to distinguish IAC and its precursors with benign diseases. Strikingly, metabolomics
clustering defines three metabolic subtypes of IAC patients with distinct clinical character-
istics. We identify correlation between aberrant bile acid metabolism in subtype Ill with poor
clinical features and demonstrate dysregulated bile acid metabolism promotes migration of
LUAD, which could be exploited as potential targetable vulnerability and for stratifying
patients. Collectively, the comprehensive landscape of the metabolic evolution along the
development of LUAD will improve early detection and provide impactful therapeutic
strategies.
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ARTICLE

ung cancers remain the most common malignancy and the

leading cause of cancer deaths worldwide!. Lung adeno-

carcinoma (LUAD) is the most common subtype?. Before
progression to invasive LUAD, there is step-wise evolution of pre-
neoplasia and pre-invasive lesions, ranging from atypical adeno-
matous hyperplasia (AAH) to atypical pre-invasive adenocarci-
noma in situ (AIS), minimally invasive adenocarcinoma (MIA),
and eventually invasive adenocarcinoma (IAC)3. Clinical appli-
cation of low-dose computed tomography (CT) has contributed
to a substantial increase in the detection of pulmonary nodules
and a reduction in mortality of lung cancer, however, the high
false-positive rate of imaging highlights the need for potent
approaches for early detection of high-risk patients*. Recent
studies have depicted the genomic and immune landscape of
these lesions and revealed the molecular events underlying the
initiation and progression of LUAD>10, which may facilitate
early diagnosis and cancer prevention. However, deep insight into
the metabolic trajectory from AAH to IAC remains elusive.

Metabolic reprogramming has been regarded as a cancer
hallmark and provides opportunities for cancer diagnostics,
prognostics, and therapeutics! 12, In the past decade, metabo-
lomics profiling has dramatically expanded our knowledge of
metabolic alterations evolving during cancer development. For
example, large-scale metabolomics analysis of clear cell renal cell
carcinoma (ccRCC) reveals elevation of glutathione and dipep-
tides occurs during clinical progression and metabolomics clus-
tering of human ccRCC identifies high-risk and low-risk subsets,
which can afford complementary information for patient
stratification!3. Multi-omics data have showed that metabolic
shifts occur from a very early stage of the colorectal cancer
development!4, Notably, sodium-dependent glucose transporter 2
(SGLT?2) reportedly overexpressed in AAHs of the lung does not
transport the common cancer imaging tracer !3fluoro-2-
deoxyglucose (FDG) but the methyl-4-deoxy-4-['8F]-fluoro-a-
D-glucopyranoside (Me4FDG) for identification of AAH and
low-grade adenocarcinomas of the lung, suggesting a distinct
metabolic signature in pre-neoplasia lesions!>. Since much of
what is currently known about the metabolic reprogramming of
LUAD comes from the advanced stage, there is an urgent unmet
need of characterizing metabolic evolution from pre-neoplasia to
pre-invasive and invasive LUAD.

Here we perform targeted metabolomics profiling on both
tissue and plasma samples derived from two independent cohorts
to identify the metabolic alterations that may contribute to the
initiation and progression of LUAD. We observe the progressive
metabolic alterations from AAH to AIS, MIA, and IAC, sug-
gesting that metabolic reprogramming emerges in premalignant
lesions. Moreover, we reveal that different panels of circulating
plasma metabolite biomarkers accurately distinguish early LUAD
and benign diseases, which holds promise for non-invasive and
low-cost early diagnosis. Notably, metabolomics clustering of IAC
patients identifies three metabolic subtypes (S-I, S-II, and S-III)
with distinct clinical characteristics. Pathway enrichment analysis
shows that bile acid metabolism is aberrantly activated in S-IIT
compared to S-I and S-II, and associates with poor prognosis.
Functionally, we demonstrate that modulating bile acid metabo-
lism can affect the migration of LUAD. Collectively, our findings
decipher a comprehensive metabolic landscape from preneoplasia
to invasive LUAD and provide an opportunity for more precise
diagnostics and therapeutics of the disease.

Results

Metabolomic landscape of lung preneoplasia and adenocarci-
noma. To obtain the comprehensive metabolomic landscape of
the resected lesions from lung preneoplasia to pre-invasive and

invasive adenocarcinoma, we performed the large-scale targeted
liquid chromatography-mass spectrometry (LC-MS)-based
metabolomics analysis on the tumor and paired normal adjacent
tissue (NAT) obtained from a cohort (cohort 1) including 181
patients across different histological subtypes (n=12 for AAH,
n =22 for AIS, n =19 for MIA and n =128 for IAC). In addi-
tion, we also characterized the dynamic alterations in circulating
metabolites of plasma samples obtained from another indepen-
dent cohort (cohort 2) including 92 patients across varying his-
tological grades (n=10 for benign diseases, n =32 for AIS,
n=22 for MIA and n=28 for IAC) (Fig. 1a). The clinical
characteristics of the patients were shown in Fig. 1b-d and
Supplementary Data 1. We totally detected 158 metabolites in the
tissue samples and 140 metabolites in the plasma samples (Sup-
plementary Data 2 and 3), covering a wide range of biochemicals
including amino acids, organic acids, nucleotides, nucleosides,
amines, acylcarnitines, vitamins, carbohydrates, and approxi-
mately 3-4% metabolites of other classes (Fig. le, f, and Sup-
plementary Fig. 1a). Principal component analysis (PCA) showed
the distinct metabolic profiles between tumor and NAT samples
(Supplementary Fig. 1b). Of note, we identified 25 significantly
differential metabolites in AAH versus its paired NAT, 67 sig-
nificantly differential metabolites in AIS versus its paired NAT,
62 significantly differential metabolites in MIA versus its paired
NAT, and 87 significantly differential metabolites in IAC versus
its paired NAT (Wilcoxon signed-rank test, false discovery rate
(FDR) < 0.05 and fold change > 1.25 or <0.8) (Supplementary
Fig. 1c). The increasing number of differential metabolites in
lesions of varying histological grades versus its NAT may suggest
the progressively disturbed metabolic processes from pre-invasive
to minimally invasive and invasive LUAD.

The progressive metabolic evolution from AAH to IAC. Given
that metabolic reprogramming is crucial for cancer initiation and
progression!2, we were thus interested to delineate the progressive
metabolic evolution from preneoplasia to AIS, MIA, and then IAC.
Partial least squares discrimination analysis (PLS-DA) clearly dis-
tinguished invasive LUAD from pre-invasive and minimally inva-
sive. LUAD (Fig. 2a). Interestingly, we found 54 significantly
differential metabolites in IAC versus AAH/AIS patients whereas 30
differential metabolites in IAC versus MIA patients (Wilcoxon
rank-sum test, FDR < 0.05 and fold change > 1.25 or <0.8) (Fig. 2b),
implying that metabolic processes may be gradually shaped during
the early carcinogenesis of LUAD. Furthermore, Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway-based analysis
showed several metabolic pathways, such as nicotinate and nicoti-
namide metabolism, p-Alanine metabolism, glutathione metabo-
lism, arginine and proline metabolism, were progressively disturbed
in MIA and IAC, compared to pre-invasive lesions (Fig. 2c). In
addition, purine and pyrimidine metabolism, thiamine metabolism,
and glycerophospholipid metabolism showed vigorous perturbation
early in the MIA before the invasive LUAD (Fig. 2c). To delineate
the metabolite trajectories in the airway progress from preneoplasia
to invasive LUAD, we performed c-means clustering using the
differential metabolites among four stages (Kruskal-Wallis tests,
FDR < 0.1) and identified four distinct clusters (Supplementary
Fig. 2a and Fig. 2d). Metabolites in cluster 1 showed a marked
increase in AIS (e.g., spermine, spermidine, histamine, and cystine)
whereas metabolites in cluster 2 were specifically enriched in MIA
(e.g, guanosine, guanine, cysteine, nicotinamide, and taurine)
(Fig. 2e, f), suggesting that unique metabolic vulnerabilities may
appear in specific early stages which could be exploited to diagnose
and monitor premalignant lesions. Notably, several metabolites in
cluster 3 and cluster 4 showed a stepwise increase or decrease from
pre-invasive to MIA and IAC patients. The level of arginine was
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Fig. 1 Schematic overview of the study. a Overview of the study design. The illustration was created with BioRender.com. b Eight morphological stages
from lung preneoplasia to invasive adenocarcinoma. ¢, d Clinical parameters of the study cohort 1 (¢) and cohort 2 (d) were indicated in the heatmap. DFS,
disease-free survival; OS, overall survival; CTC, circulating tumor cell (FU/3 mL). e, f Classes and counts of metabolites detected in cohort 1 (tissue

samples) and cohort 2 (plasma samples).

decreased whereas the levels of two key metabolites in arginine and
proline metabolism, hydroxyproline and N-Acetylputrescine, were
both moderately increased (Fig. 2g and Supplementary Fig. 2b). We
also observed that S-adenosylmethionine (SAM) and 5-methyl-
thioadenosine that involved in cysteine and methionine metabolism
displayed a constant upward trend, whereas methionine exhibited a
downward trend along with the tumor progression (Fig. 2g and
Supplementary Fig. 2b). These changes in metabolites involved in
cysteine and methionine metabolism were consistent with the
previous reports that perturbation of methionine metabolism plays
a critical role in epigenetic modifications, such as methylation of
DNA and histones, that promote tumorigenesis!®-18, Moreover, a
marked elevation in AMP and GMP, key metabolites associated
with purine metabolism, were found in the IAC group compared to
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the pre-invasive and MIA patients, indicating that purine metabo-
lism may be highly involved in the invasiveness during tumor
development (Fig. 2g). In addition, we also found glycerol-3-
phosphocholine and phosphocholine involved in glyceropho-
spholipid metabolism increased progressively along with disease
progression (Fig. 2g). Taken together, these findings depict the
metabolic trajectory from AAH to IAC, and indicate that several
reported metabolic vulnerabilities in invasive LUAD have emerged
in premalignant lesions.

Diagnostic value of circulating plasma metabolites in patients
with different stages. Early detection greatly enhances the
chances for successful cancer treatment!?20, In contrast to the
traditional biopsy and radiologic screening by low-dose CT, a
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Fig. 2 Progressive metabolic evolution from AAH to IAC. a Partial least squares discriminant analysis (PLS-DA) of the metabolomics data from AHH, AlS,
MIA, and IAC patients. b Volcano plots of the significantly differential metabolites in pre-invasive group (AAH/AIS) versus IAC or in MIA versus IAC were
shown. Two-sided Wilcoxon rank-sum tests followed by Benjamini-Hochberg (BH) multiple comparison test with false discovery rate (FDR) <0.05 and
fold change > 1.25 or <0.8. Metabolites significantly increased or decreased were colored in purple and green, respectively. ¢ Kyoto Encyclopedia of Genes
and Genomes (KEGG) metabolic pathways enriched by significantly differential metabolites in pre-invasive group (AAH/AIS) versus IAC or in MIA versus
IAC group. One-sided Fisher's exact test followed by BH multiple comparison test with FDR < 0.05. d Clustering of metabolic trajectories using differential
metabolites among AAH, AIS, MIA, and IAC. Two-sided Kruskal-Wallis tests followed by BH multiple comparison test with FDR < 0.1. e, f Dynamic

alterations of metabolites in cluster 1 and cluster 2. The dots represent the mean log, relative abundance. Two-sided Kruskal-Wallis tests followed by BH
multiple comparison test with FDR < 0.1. g Violin plots of metabolites in cluster 3 and cluster 4. The difference of metabolites among AHH, AIS, MIA, and
IAC were evaluated using a two-sided Kruskal-Wallis test. Black dots represent population medians.

blood-based test is non-invasive and relatively low-cost?!. Iden-
tifying the circulating metabolic biomarkers is a promising
approach that could facilitate blood-based screening for early
LUAD. Therefore, we performed the plasma metabolomics pro-
filing and totally identified 16 altered metabolites among four
stages (Kruskal-Wallis tests, P <0.1) (Fig. 3a). To discover pre-
dictive biomarkers for distinguishing different histological sub-
types of LUAD, especially for early stages, we built logistic

4

regression models based on differential metabolites between two
given groups (benign diseases versus AIS/MIA/IAC, benign dis-
eases versus AIS/MIA, benign diseases versus AIS). A biomarker
panel of four metabolites with Area Under Curve (AUC) of 0.894,
enabling the discrimination between benign diseases and LUAD
groups (AIS/MIA/IAC), was identified (Fig. 3b). The panel con-
sisted of 3-chlorotyrosine, 12:0-carnitine, glutamate, and phos-
phocholine. The levels of 3-chlorotyrosine and phosphocholine
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Fig. 3 The alteration of circulating metabolites in plasma from patients with different stages. a Heatmap of metabolite alterations from benign diseases,
AlS, MIA, and IAC. Two-sided Kruskal-Wallis tests with P<0.1. b The receiver operating characteristic (ROC) curve and log;o relative abundance of 3-
chlorotyrosine, 12:0-carnitine, glutamate, and phosphocholine (benign diseases, n=10; AIS/MIA/IAC, n= 82). A two-sided Wilcoxon rank-sum test was
used. ¢ The ROC curve and logyg relative abundance of cystine and valine (benign diseases, n =10; AIS/MIA, n = 54). A two-sided Wilcoxon rank-sum test
was used. d The ROC curve and logq relative abundance of asparagine and cystine (benign diseases, n=10; AlS, n = 32). A two-sided Wilcoxon rank-sum
test was used. In the box plots b-d, the center line represents the median, and the box bounds represents the inter-quartile range. The whiskers span 1.5-

fold the inter-quartile range. AUC, Area Under Curve.

were significantly increased whereas the levels of glutamate and
12:0-carnitine were markedly decreased in LUAD groups com-
pared to benign diseases (Fig. 3b). Interestingly, the marked
decrease in glutamate in AIS/MIA/IAC compared to the benign
diseases is consistent with a previous finding that plasma con-
centration of glutamate allows discrimination between lung
cancer and lung inflammation, and a low glutamate concentra-
tion is considered as a diagnostic biomarker for lung cancer?2.
Moreover, in the classification of benign diseases and AIS/MIA, a
combination of two metabolites showed a high AUC value of
0.865. The levels of two metabolites, including cystine and valine,
were decreased in AIS/MIA compared to benign diseases
(Fig. 3¢). Notably, a panel of two metabolites (i.e., asparagine and
cystine) achieved an AUC of 0.931 in distinguishing AIS from
benign diseases. An increase in asparagine and a decrease in
cystine were observed in AIS compared to benign diseases
(Fig. 3d). These findings demonstrate the power of metabolomics
for biomarker discovery, which facilitates early detection of
LUAD more precise and accessible.

NATURE COMMUNICATIONS | (2021)12:6479 | https://doi.org/10.1038/s41467-021-26685-y | www.nature.com/naturecommunications

Metabolic stratification of IAC patients and their clin-
icopathologic correlations. To evaluate whether the invasive
LUAD could be partitioned into subtypes with distinct metabolic
properties, we performed unsupervised clustering analysis on IAC
patients (Supplementary Fig. 3a, b). Of note, three metabolic
subtypes with distinct clinical features were identified. We found
that S-II had the highest mutation frequency of EGFR whereas S-1
had the lowest (Fisher’s exact test, P = 0.023). Patients with KRAS
mutation were observed in S-II and S-III, and patients with BRAF
mutation were observed only in S-III (Fig. 4a). Intriguingly, the
early-stage (P=0.006) and lepidic pathological subtypes
(P=10.001) were enriched in patients in S-I, whereas solid and
micropapillary pathological subtypes as well as higher level of
tumor node metastasis (TNM) stages were enriched in patients in
S-II and S-III. Moreover, clinicopathologic factors such as smaller
tumor size (<2.5c¢cm, P=239x107°) and non-metastatic
(P=0.016) patients were more prominent in S-I versus the
other two subtypes. Among these three metabolic subtypes, S-III
had the highest percentage of smokers (P=0.088) (Fig. 4b).
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Fig. 4 Metabolic stratification of IAC patients and their clinicopathologic correlations. a Heatmap indicating the relative abundance of metabolites in the
identified three metabolomics subtypes. b Clinical parameters of each metabolic subtype were presented. Fisher's exact test was used. ¢, d Association of
three metabolic subtypes with clinical outcomes including disease-free survival and overall survival in IAC patients. A two-sided log-rank test was used.

Together, these data suggest that patients in S-II and S-III
represent more malignant characteristics than those in S-I. To
further assess the prognostic value of the metabolomics cluster-
ing, we examined the disease-free survival (DFS) and overall
survival (OS) of patients in three metabolic subtypes. Consistent
with the above observations, patients in S-I had the best prognosis
whereas patients in S-II and S-III had the relatively poor prog-
nosis (log-rank test, P=0.023 for DFS) (Fig. 4c, d), indicating
that the metabolomics clustering may precisely stratify the
patients with different clinical outcomes.

Recent studies have established the comprehensive landscape of
LUAD at genomics, transcriptomics, proteomics, and phosphopro-
teomics levels?3-2%, which prompted us to integrate our metabo-
lomics data with relevant proteomics and transcriptomics data of
invasive LUAD, thus facilitating the identification of the dysregu-
lated metabolic pathways in different layers. Specifically, we jointly
analyzed The Cancer Genome Atlas (TCGA) LUAD dataset, and
transcriptomics as well as proteomics data downloaded from the
published study?3. Interestingly, we identified the common
metabolic perturbations in tumor versus NAT samples based on
multi-layer omics data. KEGG pathway enrichment analysis based
on metabolomics data and published transcriptomics as well as

6

proteomics data consistently showed that the glutathione metabo-
lism was markedly disturbed (Supplementary Fig. 4a—c). Moreover,
pathway analysis based on metabolomics data and published
transcriptomics data as well as TCGA LUAD dataset consistently
revealed a significant dysregulation of arginine-related pathways,
including arginine biosynthesis and arginine and proline metabo-
lism (Supplementary Fig. 4a, ¢, d). Therefore, we constructed a
metabolic map detailing the alterations in mRNA, protein, and
metabolite levels and observed that several metabolite changes were
consistent with their putative metabolizing enzyme (Supplementary
Fig. 4e), demonstrating that our metabolomics data were integrated
well with other omics data which provided the cross-validated
metabolic reprogramming.

Given that mutation of oncogene or tumor suppressor is a key
driver in cancer cell-autonomous metabolic reprogramming, we
therefore sought to determine the effect of EGFR mutation on the
metabolomics profile of TAC patients. PCA analysis showed
comparable metabolomic profiles between EGFR-mutant and
EGFR-wild type (WT) tumors (Supplementary Fig. 5a), however,
we found a small amount of metabolites altered in EGFR-mutant
versus EGFR-WT tumors with P <0.05, which did not pass the
FDR cutoff. Cysteine showed the increased abundance whereas
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Fig. 5 Accumulation of bile acids in metabolic subtype Ill and its association of with clinical outcome. a KEGG metabolic pathways enriched by

significantly differential metabolites (Two-sided Wilcoxon rank-sum test, FDR < 0.05) in each subtype relative to the other two metabolic subtypes. One-
sided Fisher's exact test followed by Benjamini-Hochberg (BH) multiple comparison test with FDR < 0.05. b Boxplots of the log, relative abundance of bile
acids in three metabolic subtypes (S-I, n = 33; S-ll, n = 63; S-1ll, n =30). Two-sided Kruskal-Wallis tests were used. The centerline represents the median,
and the box bounds represent the inter-quartile range. The whiskers span 1.5-fold the inter-quartile range. ¢, d Kaplan-Meier curves predicting the disease-
free survival and overall survival of IAC patients stratified by bile acid level with two-sided log-rank P value. The patients were divided into high and low

groups by 0.4 quantile of the bile acids levels in IAC patients.

succinate, XMP, ribose 5-phosphate, glycerol 3-phosphate,
glucarate showed the decreased abundance in EGFR-mutant
tumors compared with EGFR-WT tumors (Supplementary
Fig. 5b).

Perturbation of bile acid metabolism is associated with poor
prognosis, and promotes migration of LUAD

After stratifying patients according to metabolic subtypes, we
sought to determine the metabolic vulnerabilities of each distinct
subtype. KEGG pathway enrichment analysis based on differ-
ential metabolites in each cluster showed that S-I with a good
prognosis presented less metabolic perturbations compared with
S-1I and S-IIT with poor prognosis (Fig. 5a). Notably, S-III was
specifically characterized by the highest levels of metabolites in
pathways related to bile acid metabolism and citrate cycle

(Fig. 5a). To further investigate the alteration of bile acids in the
three distinct subtypes, we detected different bile acid species and
found a marked increase in cholic acid (CA), taurochenodeoxy-
cholic acid (TCDCA), glycochenodeoxycholic acid (GCDCA),
and a moderate increase in deoxycholic acid (DCA), glycocholic
acid (GCA), chenodeoxycholic acid (CDCA), glycodeoxycholic
acid (GDCA), taurocholic acid (TCA) and taurodeoxycholic acid
(TDCA) from S-I to S-III (Fig. 5b). Importantly, we identified
that several bile acids, including CA, GCDCA, TCDCA, and
GCA, were highly correlated with clinical outcomes. Patients with
higher levels of bile acids showed poorer DES or OS (Fig. 5c¢, d,
and Supplementary Fig. 6a-e).

There is increasing evidence that bile acid metabolism plays a
role in the progression of various cancers?®-28, TGR5, G protein-
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coupled bile acid receptor 1 (GPBARI), is a bile acid signaling
receptor. Activation of TGR5 induced by bile acids leads to an
increase in intracellular cyclic AMP (cAMP), thus triggering
downstream signaling events that are associated with metabolic
disease, inflammation, and cancers®-3l. In line with the
dysregulated bile acid metabolism in S-III subtype, our
immunohistochemistry analysis also showed the highest expres-
sion of TGRS in patients from S-III compared to those from S-I
and S-II subtype (Fig. 6a, b). Epithelial-to-mesenchymal transi-
tion (EMT) is known to be a latent cell-biology programme
involved in embryogenesis, wound healing, and malignant cancer
progression3233, We found that expression of mesenchymal
marker vimentin was also enhanced in S-III compared with S-I
and S-II subtype, suggestive of the malignancy of S-III subtype
(Fig. 6a, b). Moreover, patients with higher expression of TGR5
or vimentin presented shorter DFS and OS (Fig. 6¢c, d).
Interestingly, analysis of the TCGA LUAD dataset revealed that
TGR5 positively correlated with vimentin expression at the
mRNA level (Fig. 6e). Together with distinct clinical outcomes in
three subtypes, our data supported the potential relevance of
TGR5 with LUAD recurrence or metastasis. Given the above
findings, we next asked whether dysregulated bile acid metabo-
lism and signaling plays a functional role in the invasive LUAD
malignancy. The migration and wound healing assay showed that
treatment with the CA, TCDCA, and GCDCA promoted cell
migration whereas knockdown of TGR5 suppressed the CA-
induced cell migration (Fig. 6f, g and Supplementary Fig. 7a, b).
In addition, triamterene, which has recently been used for an
antagonist of TGR5343%, blocked the cell migration enhanced by
the specific bile acids (Supplementary Fig. 7b), suggesting that
TGR5 may be involved in the bile acid-mediated cell migration.
To determine whether the cells treated with bile acids would also
show heightened metastatic potential in vivo, we pre-treated
A549 cells with three kinds of bile acids before injecting them into
the tail vein of athymic mice and subcutaneously administrated
with bile acids daily at a dose of 3.2 mgkg~! (ref. 3637) (Fig. 6h).
Treatment of CA and GCDCA markedly potentiated the ability of
the cells to colonize lungs and form metastatic lesions (Fig. 6i, j).

In addition, we also evaluated the effect of manipulating bile
acid metabolism and signaling on cell proliferation and found the
treatment of CA, TCDCA and GCDCA did not affect cell
proliferation and cell survival, however, knockdown of
TGR5 significantly inhibited cell survival (Supplementary
Fig. 8a-e). Notably, we found that bile acids showed similar
levels in EGFR-mutant versus EGFR-WT tumors and neither
exogeneous CA, TCDCA, and GCDCA treatment nor knock-
down of TGRS influenced the drug sensitivity to EGFR tyrosine
kinase inhibitors (EGFR TKIs), suggesting that bile acid
metabolism and signaling may not affect the efficiency of targeted
therapy in EGFR-mutant LUAD (Supplementary Fig. 9a-d).
Together, these results suggest that perturbed bile acid metabo-
lism and signaling may potentiate migration of LUAD,
representing a promising therapeutic target to improve the poor
prognosis characteristic of the S-III subtype.

Discussion

Early detection and intervention contribute to improving clinical
outcomes of patients with lung cancer33, highlighting an urgent
need to gain deep mechanistic insights into the evolutionary
trajectory from preneoplasia to invasive LUAD. Genetic and
microenvironmental factors have been reported to drive clonal
evolution within tumors, which can lead to metabolic liabilities
while facilitating cancer progression3%40. However, the sophisti-
cated view of how metabolic phenotypes evolve during the neo-
plastic and invasive progression in LUAD is currently lacking. In

this study, we deciphered the metabolic trajectory from AAH to
AIS, MIA, and IAC based on a large-scale metabolomics profiling
on tissue samples, providing complementary insights beyond the
current genomic understanding. We also identified three panels
of circulating plasma metabolites to distinguish IAC and its
precursors from benign diseases. Our consensus clustering ana-
lysis of metabolomics data identified distinct metabolic subtypes
that were associated with clinical outcomes, highlighting the
potential metabolic vulnerabilities for exploiting precise medicine
approaches.

Emerging evidence have demonstrated that metabolic pheno-
types evolve during tumor progression from premalignant lesions
to locally invasive tumors and metastatic cancer!?. Recently,
gene-expression profiling and multispectral imaging analysis of
lung squamous cell carcinoma have identified a transient rise in
some metabolic pathways, such as fatty acid metabolism, oxida-
tive phosphorylation, and the citric acid cycle, in preneoplastic
lesions*!. In our study, we observed the gradually altered meta-
bolic pathways, including nicotinate and nicotinamide metabo-
lism, B-Alanine metabolism, glutathione metabolism, arginine
and proline metabolism along with the neoplastic and invasive
progression of LUAD. Indeed, these metabolic pathways are
critical in various cancers!®42-4>, suggesting that such metabolic
vulnerabilities may be exploited for early detection and inter-
vention for LUAD patients. Using c-means clustering, we found
that several metabolites showed a specific increase in AIS or in
MIA, suggestive of distinct metabolic vulnerabilities in pre-
malignant lesions. Moreover, we also found the progressively
upward or downward trend of differential metabolites from AAH
to AIS, MIA, and IAC. Specifically, metabolites involved in purine
metabolism showed marked increase from the pre-invasive to the
invasive stage, implying a dysregulated proliferative state during
invasive progression. In line with our findings, a recent study has
also demonstrated that the progressive pre-malignant dysplastic
lesions are associated with “Proliferative subtypes” which may
need close monitoring and early interventions*¢. Overall, inte-
grating clinical and metabolomics data may contribute to scoring
systems that are able to identify pre-invasive lesions most likely to
progress to malignancy, which may help shape the morphology-
based staging criteria. Additionally, therapeutic strategies target-
ing such key metabolic pathways may play an important role in
early intervention for pre-invasive disease, which need to be
intensively studied in future work.

Notably, although we delineated the metabolic trajectory from
AAH to AIS, MIA, and IAC based on metabolomics data from
tissue samples, the metabolomic profiling of plasma samples did
not show the evolutionary metabolic changes from preneoplasia
to invasive LUAD. In fact, only 16 altered metabolites were
identified among four stages from benign diseases to AIS, MIA,
and TAC. These findings suggest that cancer progression may not
necessarily affect the plasma metabolic signatures systematically.
In addition, the correlation between plasma and tumor tissue
metabolomics during the disease progression is of great interest,
however, we did not observe a clear correlation in this study,
probably because the plasma and tissue samples for metabolomics
were obtained from different patient cohorts, indicating the
potential necessity to collect the plasma and tissue samples from
the same cohort for correlation analysis in the future.

The high false-positive rate of radiologic screen in early cancer
detection highlights an urgent need for incorporating clinical and
morphologic assessment with other non-invasive diagnostics,
such as molecular testing and circulating metabolic biomarkers,
to enhance the screening efficiency, decrease costs, avoid over-
treatment and improve clinical outcomes?!. However, most cur-
rent blood-based analyses for diagnosis of LUAD depend on
genomic or proteomic biomarkers with finite accuracy*’:48.
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Fig. 6 Aberrant bile acid metabolism promotes migration of invasive LUAD. a Representative image of immunohistochemical staining of TGR5 and
vimentin on 126 IAC patient tumor from S-I (n = 33), S-Il (n = 63), and S-lll (n =30) subtypes. Scale bar, 100 pM. b Immunohistochemical (IHC) score of
TGR5 and vimentin from patients in S-1 (n=33), S-Il (n=63), and S-lll (n=30) subtypes. A two-sided One-way ANOVA test was used. The centerline
represents the median, and the box bounds represent the inter-quartile range. The whiskers span 1.5-fold the inter-quartile range. ¢ Kaplan-Meier curves
comparing the disease-free survival and overall survival in IAC patients with a high group (histoscore > 80 in TGR5 expression) versus low group
(histoscore < 80 in TGR5 expression). A two-sided log-rank test was used. d Kaplan-Meier curves comparing the disease-free survival or overall survival in
IAC patients with a high group (histoscore > 20 in vimentin expression) versus low group (histoscore < 20 in vimentin expression). A two-sided log-rank
test was used. e The correlation plot of TGR5 with vimentin expression with significant Pearson’s correlation in TCGA LUAD dataset (n=525). R,
Pearson’s correlation coefficient. f, g Transwell migration assays were performed on H1299 cells treated with CA (100 pM), TCDCA (100 pM), and
GCDCA (100 uM) or treated with CA (100 pM) and transfected with or without siTGR5. Representative images (left, scale bar, 100 pm) for three
biological repeats and statistical analyses (right, n=75) of the migrated cells are shown. siCtrl, siControl. Data represent the mean +s.e.m. and One-way
ANOVA followed by Tukey's multiple comparison test was used. h Diagram showing the experimental design for in vivo metastasis assay (see Methods).
i Lung metastasis assay of A549-luciferase cells treated with indicated bile acids (Vehicle, n=7; CA, n=8; GCDCA, n=7; TCDCA, n=5, example mice
shown to left). j Quantification of the metastasis nodules on the pulmonary surface of each groups (Vehicle, n=7; CA, n=8; GCDCA, n=7; TCDCA,
n=>5). Ini and j, data represent the mean £s.e.m. and two-tailed Student's t-test was used.
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Strikingly, our study revealed a biomarker panel of four meta-
bolites was valuable in classifying lung lesions as benign disease or
invasive LUAD and its precursors. In addition, a biomarker panel
consisting of cystine and valine clearly distinguished benign
diseases from premalignant lesions (AIS/MIA), and another
biomarker panel consisting of asparagine and cystine was useful
in discriminating benign diseases from AIS. Notably, determining
whether pulmonary nodules are malignant or benign is critical for
clinicians to choose appropriate management. Our findings
demonstrate the application of unbiased metabolomics for bio-
marker discovery, thus serving as an initial cancer screen for the
at-risk populations.

Genomics, transcriptomics, and proteomics information have
been used to cluster different kinds of cancer types into
subgroups?349-51 Tt is worth noting that a recent study reveals that
metabolomics clustering of human clear cell renal cell carcinoma
(ccRCC) identifies distinct high-risk and low-risk subtypes!3. Here,
using the data-driven method, we identified three metabolic sub-
types which represented distinct metabolic features and correlated
with clinical, pathological, and prognostic characteristics of IAC.
Interestingly, patients in S-II and S-III subtypes showed more
malignancy in clinical and pathological characteristics, such as
histological subtypes, TNM stages, tumor size, and smoke history
compared to those in S-I. Of note, the relatively large cohort and
long clinical follow-up time of our study enable the integration of
post-surgical recurrence and/or metastasis as well as overall survival
with metabolic subtypes, thus assessing of their prognostic values.
This may guide the treatment strategies after surgical resection and
aid in the discovery of personalized therapeutic targets. Among the
most striking metabolic features, high levels of bile acids identified
in S-III correlated with the poor prognosis irrespective of the TNM
classification and morphology-based subtypes, which was consistent
with previous reports that bile acid metabolism plays an important
role in many cancers, such as liver cancer, colorectal cancer, and
melanoma metastasis?®362, These findings suggest that integrating
the identification of metabolic biomarkers in biopsy with current
clinical classifications may aid in improving the staging criteria
more precisely.

The intracellular nuclear receptor farnesoid X receptor (FXR)
and membrane receptor TGR5 respond to bile acids by activating
transcriptional networks or signaling cascades associated with
metabolic disease, inflammation, and cancers?8. Of note, GCDCA
has been reported to promote invasion and migration of liver
cancer through AMPK/mTOR-dependent autophagy activation®>.
In addition, another study recently shows that some bioactive bile
acids accumulated to high levels in the melanoma metastatic
sentinel lymph nodes (LN) activate YAP and fatty acid oxidation,
and stimulate further growth of the LN-metastatic tumor3°.
Intriguingly, our study revealed the highest expression of TGR5
and EMT marker vimentin in the S-IIT subtype and the correlates
of high TGR5 or vimentin expression with poor prognosis.
Moreover, several bile acids, such as CA, TCDCA, GCDCA,
contributed to the enhanced metastatic potential of LUAD. These
data indicate that manipulating bile acid metabolism and signaling
could be a potential therapeutic strategy in the aggressive subtype
of invasive LUAD. Targeted therapy and immunotherapy have led
to prodigious survival benefits in selected patients®*. In our study,
bile acids showed similar levels in EGFR-mutant versus EGFR-
WT tumors, and manipulation of bile acid metabolism showed no
effect on the targeted therapy response using in vitro experiments,
suggesting that dysregulated bile acid metabolism may not influ-
ence the targeted therapy of LUAD. Notably, it has been well-
known that therapeutics targeting metabolic reprogramming, such
as low glucose levels, hypoxia, and suppressive metabolites pro-
duction, show promise as combination therapies for different
types of cancer to enhance anticancer immune responses®>~>°. For

example, melanoma patients bearing oxidative tumors, which are
more hypoxic than glycolytic tumors, show resistance to PD1
blockade through a more exhausted T cell characteristic®®. In
addition, increased arginine levels can shift T cell metabolism
from glycolysis to OXPHOS and support its antitumor function®l.
Interestingly, a previous study has demonstrated that gut micro-
biome use bile acids as messengers to modulate the chemokine-
dependent accumulation of hepatic NKT cells and liver antitumor
immunosurveillance, and thus suppress both primary and meta-
static tumors2%%2, indicating the importance of bile acid meta-
bolism in regulating the tumor immune microenvironment.
Therefore, it is interesting to explore the effect of aberrant bile acid
metabolism on immunotherapy in LUAD in the future.

In summary, the metabolomics analysis of patients with dif-
ferent stages deciphers evolutionary metabolic trajectory from
preneoplasia to invasive LUAD, thus providing a comprehensive
understanding of the neoplastic and invasive progression of
LUAD and further offering an opportunity to expedite the
translation of basic research to more precise diagnosis and ther-
apy in the clinic.

Methods

Clinical samples. There are two clinical cohorts collected for tumor tissue and
plasma metabolomics analysis. The patient tissue specimens for this study were
collected from Shanghai Pulmonary Hospital during December 2015 to June 2016.
Briefly, a total of 181 patients were enrolled in this study, including 12 AAH, 22 AIS,
19 MIA, and 128 IAC patients. Patients receiving any anti-cancer treatments before
surgery were excluded. Primary tumor tissues and paired non-cancerous adjacent
normal tissues (>3 cm apart from tumor edge) were surgically resected and trans-
ferred to liquid nitrogen during operation and stored in —80 °C refrigerators until
being used for metabolite extraction. Clinical information including gender, age,
smoke history, tumor size, histological subtype, TNM stage, the status of recurrence,
and status of survival were collected. The plasma samples were collected from a total
of 92 patients in Shanghai Pulmonary Hospital, which contained 10 patients with
benign diseases, 32 patients with AIS, 22 patients with MIA, and 28 patients with IAC.
The benign diseases included inflammatory lesions, granuloma, lymphoid hyperpla-
sia, bronchiolal metaplasia, and fibrosis. The plasma collection criteria for all patients
were as follows: fasted at least 6h and blood was drawn in the morning using BD
Vacutainer EDTA tubes. The blood was then centrifuged at 1000 x g for 10 min at
4°C. The plasma supernatant was collected and centrifuged at 2000 x g for 5 min at
4°C. After aliquoting, plasma was frozen at —80 °C until metabolite extraction.
Detailed characteristics of the patient populations were provided in Supplementary
Data 1. The study was approved by the Research Ethics Committee of Shanghai
Pulmonary Hospital (Institutional Review Board: K20-317), and written informed
consent was obtained from each patient.

Metabolite extraction. For metabolite extraction of tissue samples, each tissue
sample was accurately weighed and homogenized in an ice-cold 80% methanol
aqueous solution (50 mg tissue/mL). 100 pL of homogeneous tissue sample was
mixed with 900 pL ice-cold 80% methanol aqueous solution. The mixture was then
vortexed and centrifuged at 15,000 x g for 15 min at 4 °C. 900 pL supernatant was
then transferred to a new tube. The pellet was mixed with 500 pL ice-cold 80%
methanol and re-centrifuged at 15,000 x g for 15 min at 4 °C, 500 pL supernatant
was collected and combined with the previous supernatant. After being divided
into 2 equal aliquots, the supernatant was dried under a speed vacuum con-
centrator. The dried metabolite pellets were kept at —80 °C until LC-MS analysis.
Quality control (QC) samples were prepared by pooling 10 uL homogenate of each
tissue sample. Pretreatment of QC samples was paralleled and the same to the
study samples. For metabolite extraction of plasma samples, 80 uL plasma of each
patient was mixed with 320 pL ice cold methanol. The mixture was then vortexed
and centrifuged at 15,000 x g for 15 min at 4 °C. The supernatant was divided into
3 replicates and evaporated to dryness under a speed vacuum concentrator. For QC
sample preparation, 20 uL plasma of each patient was mixed and then processed
the same as that of the study plasma samples.

Targeted metabolomics. For targeted metabolomics, all tissue samples from 181
patients were randomly divided into 14 analytical batches, with paired samples
from each patient included and randomized. QC samples were evenly inserted in
each analytical batch to monitor the instrumentation stability and subsequently
used to correct inter-batch effects. Similarly, 92 plasma samples were randomly
analyzed in 2 analytical batches with QC samples evenly inserted.

Dried metabolites were reconstituted in 50 pL of 0.03% formic acid in
analytical-grade water, vortex-mixed, and centrifuged to remove debris. Thereafter,
the supernatant was transferred to a high-performance liquid chromatography
(HPLC) vial for the metabolomics study. Targeted metabolite profiling was
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performed using a liquid chromatography-mass spectrometry/mass spectrometry
(LC-MS/MS) approach. Chromatographic separation was achieved on an
ACQUITY UPLC HSS T3 column (2.1 x 150 mm, 1.8 pm) using an ACQUITY
UPLC I-Class system (Waters). The mobile phases employed were 0.03% formic
acid in water (A) and 0.03% formic acid in acetonitrile (B) and the gradient
program was as follows: 0-3 min, 1% B; 3-15 min, 1%-99% B; 15-17 min, 99% B;
17-17.1 min, 99% - 1% B; 17.1-20 min, 1% B. The column was maintained at 40 °C
and the samples were kept in the autosampler at 4 °C. The flow rate was 0.25 mL/
min, and the injection volume was 10 uL. A Xevo TQ-XS mass spectrometer
(Waters) with electrospray ionization (ESI) source was operated in multiple
reaction monitoring (MRM) mode for mass data acquisition. The MS parameters
were set as follows: Capillary voltage 1.0 kV (positive) and 2.5kV (negative),
desolvation temperature 450 °C, desolvation gas flow 900 L/Hr. Cone voltage (CV)
and collision energy (CE) were optimized for each metabolite by direct infusion of
reference standards using a syringe pump prior to sample analysis. With positive
and negative switching mode, a total of 261 metabolites were monitored including
165 ion transitions in positive mode and 96 ion transitions in negative mode.
Metabolite classification was gathered from HMDB (http://hmdb.ca).

Metabolomics data analysis. Chromatogram review and peak area integration
were performed using Skyline 4.1 software (MacCoss Lab). The processed data
were exported for further analysis. The missing value was removed according to the
80% rule®3, wherein, a metabolite was considered as detectable when it was
detected across at least 4/5 samples in one group, and undetected metabolites (<1/
5 samples) were filled with a detection baseline value, 1000, to allow the following
statistical analysis.

To remove potential inter-batch variations, the mean peak area of each
metabolite from all the QC samples in all given batches (QC,y), as well as the mean
peak area of each metabolite from the QC samples that are the most adjacent to a
given group of test samples (QC,q;) were first calculated. The ratio between these
two mean peak areas for each metabolite was computed by dividing the same QC,y
by each QC,q4; and used as the normalization factor for each given group of test
samples. The peak area of each metabolite from each test sample were normalized
by multiplying their corresponding normalization ratio to obtain the normalized
peak areas. In addition, to effectively correct the sample to sample variation in
biomass that may contribute to systematic differences in metabolite abundance
detected by LC-MS, we generated the scaled data by comparing the normalized
peak area of each metabolite to the sum of the normalized peak area from all the
detected metabolites in that given sample.

Relative abundance was defined as the ratio of metabolite intensity (tumor/
NAT) of each patient, which was used to further analyze metabolic differences
between various stages of lung adenocarcinoma. The multivariate analyses,
including principal component analysis (PCA) and partial least squares
discrimination analysis (PLS-DA), were carried out using SIMCA-P (Umetrics,
Umea, Sweden), prcomp, or plsda function in the R stat package. The correlation of
metabolites with disease progression was evaluated using Mfuzz (v.2.46.0) R
package on the metabolomics data.

Logistic regression analysis. The circulating metabolite biomarker model for
predicting disease stages was established and evaluated using SPSS software
(v.27.0). Binary logistic regression was used to identify predictive factors associated
with tumor progression. A receiver-operating characteristics curve was used to
evaluate the results of the regression and analysis.

Bile acid detection. The tumor and paired NAT obtained from 126 IAC patients
were used for bile acid detection. The dried metabolite extracts were reconstituted
in 30 puL of 10% acetonitrile in water, vortexed, centrifuged at 15,000 x g for 15 min
at 4°C and the supernatant was analyzed using LC-MS/MS. Detection of 9 bile
acids was performed according to the previously described method with
modification®*. Briefly, an Ultra High Performance Liquid Chromatograph
(UHPLC) system (Nexera x 2 LC-30A, Shimadzu) was used for metabolites
separation, with an ACQUITY UPLC HSS-T3 UPLC column (50 x 2.1 mm, 1.8 um,
Waters) and the following gradient: 0-0.3 min 10% mobile phase B, 0.3-1.9 min
10-50% B; 1.9-2.1 min 50% B; 2.1-4.0 min 50-95% B; 4.0-4.9 min 95% B;
4.9-5.0 min 95-10% B; 5.0-5.5 min 10% B. Mobile phase A was 0.1% formic acid in
water. Mobile phase B was 0.1% formic acid in acetonitrile. The flow rate was
0.7 mL/min, the column was kept at 60 °C and the samples in the autosampler were
at 4 °C. The injection volume was 20 pL. Mass spectrometry analysis was per-
formed with a triple quadrupole mass spectrometer (Qtrap 6500+, SCIEX) under
negative mode with MRM mode. The MRM transitions for CA, CDCA, DCA,
GCA, GCDCA, GDCA, TCA, TCDCA, TDCA were 407.2 > 407.2, 391.3 > 391.3,
391.3 >391.3, 464.3 > 74.1, 448.4 > 73.9, 448.3 > 74.2, 514.2 > 80.1, 498.3 > 80, and
498.2 > 80, respectively. The data were acquired using Analyst Instrument Control
software v.1.6.3 (SCIEX) and data processing was performed using MultiQuant
software v.3.0 (SCIEX). The ratio of bile acid abundance (tumor/NAT) of each
patient was calculated for further analysis.

Metabolomics consensus clustering. Unsupervised clustering of the metabo-
lomics data of IAC patient tumor tissue samples was performed using R package

‘ConsensusClusterPlus’ (v1.50.0)%° to generate subtypes. Patient clusters were
derived based on k-means clustering, Pearson distance, and 1,000 resampling
repetitions in the range of 2 to 6 clusters. The number of clustering was determined
by two factors: the average pairwise consensus matrix within consensus clusters,
and the delta plot of the relative change in the area under the cumulative dis-
tribution function (CDF) curve. Based on the evidence above, the metabolomics
data of IAC patients were clustered into three subtypes.

Pathway enrichment analysis. KEGG pathway enrichment analysis based on
significantly differential metabolites between the indicated sample groups,
including the histological subtypes, paired tumor/NAT group, and metabolomics
subtypes, was assessed by R package ‘clusterProfiler’ (v3.14.3). Fold enrichment and
mean log2 fold change of significant metabolites in each pathway were calculated.
KEGG metabolic pathways and related metabolites were downloaded through
KEGG API (https://www.kegg.jp/kegg/rest/keggapihtml). Significant enriched
KEGG pathways were determined with Fisher’s exact test followed by BH multiple
comparison test with FDR < 0.05. TCGA dataset of patients with LUAD was
obtained from the GDC database (https://xenabrowser.net/datapages/). Another
transcriptomics dataset of patients with LUAD was obtained from the published
study?3. Differential Expressed Genes (DEGs) were identified using R package
‘edgeR’ (v3.28.1)%. We selected the genes which had FDR < 0.05 and fold change >
1.5 or <0.67. The DEGs between tumor and NAT of LUAD were used for KEGG
pathway enrichment analysis by R package ‘clusterProfiler’ (v3.14.3) and pathways
with FDR < 0.1 were selected. Proteomics data of patients with LUAD were
obtained from the published study?3. KEGG pathway enrichment analysis was
performed on the reported differential proteins using the R package ‘clusterProfiler’
(v3.14.3) and pathways with FDR < 0.1 were selected.

Association between metabolomics data and clinical outcome. Survival analysis
was performed using the R package ‘survival’ (v3.2-11). For the association analysis
between metabolite level with survival, Kaplan-Meier survival curves (log-rank test)
were used to compare overall survival or disease-free survival outcomes among two
groups. Kaplan-Meier survival curves (log-rank test) were used to compare overall
survival or disease-free survival outcomes among three subtypes. Kaplan-Meier
survival curves were plotted by function ggsurvplot in R package ‘survminer’
(v0.4.9). For correlation analysis between metabolomic subtypes and clinical fea-
tures, we performed Fisher’s exact test on categorical variables, including age,
tumor size, histological types, stage, smoke status, and metastasis/recurrence status.

Cell culture and siRNA transfection. H1299, A549, HCC827, and H1975 cells
were purchased from the ATCC and cultured in Roswell Park Memorial Institute
(RPMI) 1640 medium supplemented with 10% fetal bovine serum (FBS). All cell
lines were tested negative for mycoplasma. For siRNA transfection, lipofectamine
RNAIMAX (Thermo) was used according to the standard protocol. All siRNAs
targeting the genes were obtained from Genepharm Technologies. The two
TGR5 siRNA targeting sequences were listed in the Supplementary Table 1.

Western blot analysis. Cells were homogenized in RIPA butter supplemented
with protease and phosphatase inhibitors using a cell scraper. Lysates were cen-
trifuged at 15,000 x g for 15 min at 4 °C. Protein concentration was quantified
using a bicinchoninic acid (BCA) assay. A total of 30 pug from each sample were
loaded into each lane and separated by electrophoresis on a 10% SDS poly-
acrylamide gel. After electrophoresis, proteins were transferred to cellulose nitrate
membranes. Nonspecific binding was blocked through incubation with PBST (PBS
with 0.1% Tween 20) containing 5% skim milk for at least 1 h at room temperature.
Membranes were incubated with antibodies including TGR5 (1:1000, Abcam,
catalog No: ab72608) and a-Tubulin (1:3000, ABclonal, catalog No: AC012). For
detection, HRP-linked anti-rabbit and anti-mouse IgG secondary antibodies were
used and a chemiluminescent signal was detected with a digital imager (Biotanon,
Tanon 5200).

Cell proliferation and viability assay. In brief, 2.5 x 10* cells/well were seeded in
6-well plates and treated with or without exogenous bile acids for indicated time
points. Cell numbers were counted with the thermo Countess II. Cell viability
assays were conducted with CellTiter Glo reagent (Promega) following the man-
ufacturer’s protocol. Cells were cultured in 96-well plates with the treatment of
indicated compounds for 48 h or 72 h.

Wound healing and migration assay. For the wound healing assay, 3 x 10 cells/
well were seeded in 6-well plates and incubated with indicated compounds. The
compounds including CA (S3742), TCDCA (S3865), GCDCA (S§5794), and
triamterene (S4080) were purchased from Selleck. Monolayers were scratched with
the same pipette tip. The wound closure was monitored 48 h after scratch and three
random fields of the view were recorded. For the transwell migration assay,
approximately 4 x 10% cells under different conditions were resuspended in a

200 pL medium containing 2% FBS and then placed onto the upper chamber of a
transwell filter with 8-um pores. The 600 uL medium containing 10% FBS was
added to the lower chamber. After 48 h, cells on the underside of the filter were
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fixed with 4% paraformaldehyde in PBS and were stained with 0.4% crystal violet in
10% ethanol. The migrated cells in five random fields were counted and imaged.

Lung metastasis assay in mice. All procedures involving mice and experimental
protocols were approved by the Institutional Animal Care and Use Committee of
Tsinghua University. Luciferase-expressing A549 cells were pre-treated with

100 uM CA, GCDCA, and TCDCA for 48 h before injection via the tail vein for
evaluation of lung colonization. In brief, 8-week-old female nu/nu athymic mice
were injected with 4 x 106 cells in 200 uL of PBS per mouse. Successful injections
were confirmed by bioluminescence imaging immediately after injection. After

5 days, mice were injected with or without CA, GCDCA, and TCDCA (3.2 mg per
kg, daily) subcutaneously. Metastases were monitored using IVIS Spectrum In Vivo
Imaging System (Perkin-Elmer). 4 weeks after injection, luminescence was mea-
sured and quantified using IVIS-Image Software v.4.3.1 (Perkin-Elmer) to deter-
mine lung colonization.

Immunohistochemistry. The formalin-fixed and paraffin-embedded specimens
obtained from 126 IAC patients were prepared and provided by the Pathology
Department of Shanghai Pulmonary Hospital. Slides were stained with TGR5 anti-
body (1:200, Abcam, catalog No: ab72608) and vimentin antibody (1:2000, Pro-
teintech, catalog No: 10366-1-AP), and were processed using the standard procedures.
For scoring the IHC image, histoscore was calculated by the proportion of positive
cells of tumor tissue (0-100%) by the average intensity of the positive staining
(negative staining as 0, weak staining as 1, moderate staining as 2, and strong staining
as 3), so as to obtain the score ranging from 1 to 300 for each sample. The
hematoxylin-eosin slides and the immunohistochemistry slides were examined and
evaluated independently by two experienced pathologists. The histoscore was calcu-
lated as the average scores obtained from the two pathologists. Histoscore was
compared with the disease-free survival and overall survival. Disease-free survival was
defined as the date from the date of diagnosis to recurrence, overall survival was
defined as the time from the date of diagnosis to death. To separate patients into two
groups, the optimal cutoff value was determined using the surv_cutpoint function of
the R package survminer (v0.4.9). The Kaplan-Meier method was used to generate
survival curves by ggsurvplot function of the R package survminer (v0.4.9) and the
significance of differences was compared using the log-rank test.

Statistical analysis. Methods of quantification and statistical analysis for meta-
bolomic analyses and all experiments were described in the Results, figure legends,
and corresponding Method subsections. The sample distribution was determined
by the Shapiro-Wilk test normality test and quantile-quantile plot (Q-Q plot).
Standard statistical tests were used to analyze the clinical data. Specifically, two-
sided Wilcoxon rank-sum test and Wilcoxon signed-rank test were used when
comparing two groups for unpaired samples and paired samples, respectively. A
two-sided Kruskal-Wallis test was used when comparing three or more groups. P
values were corrected for multiple testing using the Benjamini-Hochberg proce-
dure. Either GraphPad Prism or R were used to conduct tests.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Clinical information of patients with different stages is included in Supplementary Datal.
Raw metabolomics mass spectrometry data are included in Supplementary Data 2.
Normalized metabolomics data are included in Supplementary Data 3. The GDC TCGA
LUAD dataset can be downloaded from https://xenabrowser.net/datapages/. The
previously published?> RNA-seq data and proteomics data can be obtained from https:/
doi.org/10.1016/j.cell.2020.05.043. Raw data for plotting figures are provided in the
Source Data file. Source data are provided with this paper.

Code availability
Code for processing metabolomics data is available at https://github.com/iekoay/
LUAD_NCOMMS
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